
Transient Imaging for Real-Time Tracking Around a Corner
Jonathan Klein1, 2 and Martin Laurenzis1 and Matthias Hullin2

1French-German Research Institute Saint-Louis, France
2University of Bonn, Institute of Computer Science II, Bonn, Germany

ABSTRACT
Non-Line-of-Sight imaging is a fascinating emerging area of research and expected to have an impact in numerous
application fields including civilian and military sensing. Performance of human perception and situational
awareness can be extended by the sensing of shapes and movement around a corner in future scenarios.

Rather than seeing through obstacles directly, non-line-of-sight imaging relies on analyzing indirect reflections
of light that traveled around the obstacle. In previous work, transient imaging was established as the key mechanic
to enable the extraction of useful information from such reflections.

So far, a number of different approaches based on transient imaging have been proposed, with back projection
being the most prominent one. Different hardware setups were used for the acquisition of the required data,
however all of them have severe drawbacks such as limited image quality, long capture time or very heigh prices.
In this paper we propose the analysis of synthetic transient renderings to gain more insights into the transient
light transport. With this simulated data, we are no longer bound to the imperfect data of real systems and
gain more flexibility and control over the analysis.

In a second part, we use the insights of our analysis to formulate a novel reconstruction algorithm. It uses
an adapted light simulation to formulate an inverse problem which is solved in an analysis-by-synthesis fashion.
Through rigorous optimization of the reconstruction, it then becomes possible to track known objects outside the
line of side in real time. Due to the forward formulation of the light transport, the algorithm is easily expandable
to more general scenarios or different hardware setups. We therefore expect it to become a viable alternative to
the classic back projection approach in the future.

Keywords: Transient Imaging, Simulation, Rendering, Real Time Tracking, Non-Line-of-Sight, Analysis-by-
Synthesis

1. INTRODUCTION
Non-line-of-sight (NLoS) imaging aims to gather information about a scene that is not directly visible, i.e. that
is occluded by some kind of obstacle. In the past, this problem was often solved by choosing a wavelength in the
electro-magnetic spectrum that is capable of penetrating certain materials (e.g. an occluding wall) while still
being reflected by other materials (e.g. the object of interest behind the wall).1,2

In contrast, the relatively new approach of NLoS imaging attempts to look around the occluder by analyzing
light that has undergone multiple reflections. This scenario was first proposed by Kirmani et al.3 and is depicted
in Figure 1. The system consists of two main parts: A camera and a laser light source, both pointed at wall
inside the scene (e.g. the back wall of a room) that takes the role of a (diffuse) reflector. From this reflector, the
light is reflected towards the object of interest and back to the reflector, where it can be perceived by the camera.
The challenge of reconstruction lies in the nature of the three diffuse reflections (wall, object, wall): Firstly, only
a small portion of the light is reflected towards the object and only a small part of this light is reflected back
to the observed part of the reflector, leading to a total intensity loss proportional to the fourth power of the
distance from the object to the reflector. A strong laser and a low light capable camera are therefore required
to reduce the signal noise to a level that allows reconstruction. Secondly, all angular information of the reflected
light is lost, leading to a very low-frequent intensity distribution on the reflector (see Figure 7). It is notable,
that both problems immediately vanish, if a specular reflector, i. e. an ordinary mirror, is used.

NLoS imaging could become a key technology in many different areas, including remote observation, traffic
security, endoscopy and many other scenarios, where direct sensing is infeasible, dangerous or even impossible.
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Figure 1: Non-Line-of-Sight Imaging. a) A typical use case of NLoS imaging. An observer stands outside a
building, the direct sight into the room is blocked by a wall. However, using NLoS imaging he is still able to see
the person inside the room. b) The fundamental principle of NLoS imaging: A camera and a laser are pointed
at the back wall of the room. After three diffuse reflections (back wall, object of interest, back wall) the light
can be percieved by the camera.
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Figure 2: Visualization of a transient image. The scene consists of a three-plane corner illuminated by an ultra
short pulse from a point light. a) The colors depict the various parts of the scene illuminated at the different
times, the alpha value encodes the intensities. b) The total light the scene reflects at each time. The colored
bars mark the time stamps from a).



Although it might not outperform existing solutions in every aspect, we expect it to find its very own niche in
many of these fields.

At the present moment, NLoS imaging is still a rather new technology and only experimental prototypes exist.
The main problem remains the loss of angular information, which makes a direct reconstruction impossible. So
far the main tool to overcome this problem is the so called transient imaging (see Figure 2). The idea of transient
imaging is to have a time resolved image of an ultra short light pulse traveling through a scene. Resulting from
the high speed of light, the usual time scale of a transient image is in the nanosecond scale, which requires
highly specialized hardware for capturing. However, time resolved images add another dimension of information
which can be used for the reconstruction of the hidden scenes. We therefore perform an in depth analysis of
the transient light transport before we use these insights to propose a new reconstruction scheme for NLoS
imaging. The analysis is based on an advanced light simulation which will later, in a different form, act as a
main ingredient of our new method.

2. TRANSIENT LIGHT TRANSPORT ANALYSIS
Different hardware setups have been proposed for the recording of transient images. Velten et al. uses a streak
camera in combination with a femtosecond laser to record a single line at a time.4 The line is smeared out over
the whole sensor during the integration time, resulting in light reaching a different part of the sensor depending
on the time of arrival. By scanning multiple lines after each other a whole transient image is captured. So far
this approach results in the highest quality of images, however the capturing process is time consuming and the
required hardware extremely expensive.

Amplitude-modulated continuous wave (AMCW) time-of-flight (ToF) cameras are commonly used for depth
imaging (e.g. in the Microsoft Kinect v2), but can also be utilized to measure transient images. They illuminate
the scene with a modulated light source and measure the phase difference between the outgoing and incoming
light. Often, a pixel will not only receive light from a single distance but a mixture of possibly many distances,
leading to wrong depth estimates (the so called multipath effect). As the measured signal depends on the
modulation frequency, multiple frequencies can be used to untangle the returns and correct the measurements.5,6

Going one step further even complete transient images can be reconstructed.7,8 This method of acquisition can
be fast (up to real time) but the image quality is also inferior to thos captured by streak cameras.

A relatively new development is the use of single-photon avalanche detector (SPAD) cameras. They are
capable of sensing individual photons, however only with a certain probability which can be controlled via the
voltage by the user. As a probabilistic system, the sensor will not necessary trigger at the first photon that
arrives, giving it a chance to sense later once. Each pixel has an independent counter, that stops upon triggering
and thus records the arrival time of the photon. If repeated often enough, the probability distribution of a
photon arriving at a certain time can directly be measured and correlates with a transient image. However these
devices are not only very expensive but due to the stochastic process also heavily affected by noise.

As of today, all systems capable of measuring transient images have severe drawback which is why we perform
our analysis on simulated data. As the simulation of transient light transport is an extension of the ordinary
light transport, we can build upon years of research that led to algorithms which can render images that are
not distinguishable from pictures taken by a real camera. This gives us confidence that our simulated transient
images are also physically correct, even if there is no practical way to compare them to ground truth data. On
the contrary, carefully simulated data can be used as ground truth comparison for different hardware setups to
estimate their systematical errors. As it is free of errors such as noise, this ground truth data is also very well
suited to explore the theoretical limits of systems that process transient data which are otherwise affected by
those errors as well. Lastly, we also have very fine control over the simulated scene. Precise manufacturing of
test scenes can be a difficult task whereas their modeling on a CAD software is relatively easy. This way we
have access to the whole spectrum from very simple to very complex test scenes while still always knowing the
ground truth geometry.



a) 400 500 600 700 800 900b)

c) d) e)

f) g) h)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: Transient Light Transport Analysis Test Scene 1. A corner consisting of 3 planes is illuminated by a
point light. a) The total intensity of each pixel, integrated over time. b) Total intensity per time, integrated
over the pixels. c)-h) Several time slices of the scene. The colors correspond to the markers in b). The values
are scaled for better contrast, but are consistent for c)-h).

2.1 Simulation
Even though there have been some previous work directly attempting to simulate the transient light transport,9,10

the closely related problem of simulating AMCW camera data has been payed far more attention so far.11–14 This
is due to the fact, that simulated measurements help to correct the multipath effect which is of huge commercial
interest of the manufacturers.

Our implementation is based on pbrt, a state-of-the-art global illumination renderer with strong focus on ex-
perimental algorithms and rendering research.15 One if its extensions is toftracer,16 which is written by Microsoft
research and adds the computation of path lengths inside the path tracing algorithm and was originally used to
compute histograms of transient light transport for single pixels. We combine pbrt, the toftracer extension, our
scene converter for the Blender 3D modeling suite and a post processing script to build our transient rendering
pipeline which is capable of rendering transient images for arbitrary complex scenes. For the images shown here,
we computed 8192 samples at a resolution of 512×512 pixels, leading to a render time of about 45 hours on a
Intel Xeon E5-2690 CPU running 40 logical processors at 3.00 GHz on a system with 256 GB RAM. Our system
is, as pbrt, CPU based and therefore does not profit from a high end GPU.
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Figure 4: Transient Light Transport Analysis Test Scene 2. The sub figures are analog to Figure 3.

2.2 Results
We perform our analysis on two scenes with varying complexity. Figure 3 shows our first test scene. A corner
made out of 3 planes is illuminated by a point light which is placed next to the camera. As this is a three-
dimensional time-resolved data set, it is best viewed as a video (see supplementary material); in thepaper we are
constraint to only show several frames.

Figure 3a shows the transient image integrated over the time domain, which results in an ordinary intensity
image and gives a good intuition of the scene geometry. Figure 3b shows the transient image integrated over
the spatial domain, resulting in an 1D function that describes the total amount of light reflected by the scene
at a given time. These plots are often useful to locate major events in the time domain, but other interesting
events can be completely invisible in this plot. In the first frame (Figure 3c), three wave fronts start to travel
across the walls. Each first appearance of a wave front in the transient image corresponds to a sudden intensity
increase in Figure 3b; as the light diminishes with the distance, the increase than slowly declines. In Figure 3d
the first indirect reflections become visible as a much broader and weaker secondary wave front. These are not
solely second order bounces but also higher order bounces, as the additional path lengths close to the corner can
be arbitrary small. In Figure 3e the secondary waves from different walls start to overlap and it is clearly visible,
that the corners itself experience very few indirect bounces, an effect called ambient occlusion. In Figure 3f,
the last direct reflections can be seen, in 3g and 3h only higher order reflections remain. Note how the ambient
occlusion effect is now reversed and only the short path lengths close to the corners result in considerable light
amounts.
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Figure 5: Different levels of reconstruction with varying amounts of degrees of freedom. a) Voxel grid, >10.000
DoF. b) Height map, >1000 DoF. c) Object position, 3 DoF.

Figure 4 shows the more complex second scene where a floating car model was added in fornt of the corner.
Due to the added geometry, the interreflections are much more complicated now. The general light distribution
in time (Figure 4b) looks similar to the last scene, however the complex signal of the car is added and the signal
of the wall is changed slightly due to shadowing.

In Figure 4c the care is now the closest object to the camera and thus first illuminated. Due to its complex
geometry it has many interreflections, which are best seen between the windshield and the hood. In Figure 4d
the wave fronts on two of the wall appear, together with a much broader secondary wave front on the car, that
was reflected from the walls. Note how the left and bottom side of the car are illuminated by different walls. In
Figure 4e, a reflection of the car on the left wall is visible, while the primary wave front now completely passed
the car. In Figure 4f, indirect reflections from the car to the right wall and from the right wall to the car become
visible at the same time. The transient image does not only account for the time delay for the distance from the
light source to the scene but also also for the delay induced by the distance from the scene to the camera, which
is why both of those indirect reflections have very similar path length. In Figure 4g the reflections between the
wall are again visible (as in Figure 3), but more importantly the primary wave front on the bottom wall has a
hole where the shadow of the car is. However the indirect wave front in Figure 4h is continuous, as the bottom
wall is not occluded by the car when the light comes from the left wall.

These two scenes demonstrate, how our simulation is capable of simulating quite complicated effects in
arbitrary scenes. This makes it an extremely useful tool to gain better understanding of the transient light
transport.

3. NON-LINE-OF-SIGHT IMAGING
We now use the insights gained through the simulation to build a new reconstruction scheme for the problem
of indirect vision. Most solution approaches reported so far use a back projection scheme as in computed
tomography,17 where each intensity measurement taken by the imager votes for a manifold of possible scattering
locations.18–22 This explicit reconstruction scheme is computationally efficient, in principle real-time capable,22

and can be extended with problem-specific filters.20,21 However, it assumes the availability of ultrafast time-
resolved optical impulse responses, whose capture still constitutes a significant technical challenge.

In contrast, implicit methods state the reconstruction task in terms of a problem-specific cost function that
measures the agreement of a scene hypothesis with the observed data and additional model priors. The solution
to the problem is defined as the function argument that minimizes the cost. In the only such method reported
so far,23 the authors regularize a least-squares data term with a computationally expensive sparsity prior, which
enables the reconstruction of unknown objects around a corner without the need for ultrafast light sources and
detectors.

3.1 Computer graphics driven approach
Our approach is based on the insight, that a scene reconstruction can per performed on different levels, resulting
in a different amount of degrees of freedom (see Figure 5). In this example the scene to be reconstructed solely
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Figure 6: Our Analysis by synthesis approach. a) The optimizer adopts the parameters of the scene hypothesis
until the synthetic rendering matches the captured image. These parameters are then believed to accurately
describe the real scene and returned. b) Simplified light transport in the three bounce setup.

consists of a car. On the first and most detailed level, the scene is modeled as a voxel grid (as used in e.g. Velten
et al.21), which results in a enormous number of degrees of freedom (one per voxel) when at least a reasonable
resolution is chosen. This level gives a great amount of detail, however it is usually very hard to reconstruct. On
the second level the scene is modeled as a height map (as used in e.g. Heide et al.23), which is a very reasonable
approximation, if it can only be viewed from one direction (as it is the case in our basic setup, see Figure 1b).
The data structure then is only two-dimensional which drastically decreases the number of degrees of freedom.
In the last and most simplified level, the scene is modeled as a car object which has always the same shape,
but varies in position. Then the only degrees of freedom remaining are the position which can greatly simplify
the reconstruction. However this level can only be used for scenes consisting of exactly one object with known
geometry. This may render it useless in some cases, but is a valid assumption in many others (e.g. humans
can be approximated by a single shape reasonably well). We use this approach that was previously unseen in
literature for our reconstruction scheme.

Inspired by our foregoing analysis we perform the reconstruction in an analysis-by-synthesis fashion. As the
forward problem (the rendering of a given scene) is already solved, we formulate the inverse problem by using
the rendering part inside a numerical optimization, as depicted in Figure 6a. This approach has been applied to
a number of other problems before (e.g. Nayar et al.24), but to our knowledge we are the first to introduce it to
this particular problem.

In order to perform the rendering, we must know the scene geometry (mainly the position and orientation
of our camera system and the reflector), the shape of the object and the properties of the involved materials.
In the future, the scene geometry could be acquired by an on-the-fly calibration step by measuring the distance
and orientation of the reflector (possibly with a depth camera) and assuming that our camera and laser form a
rigid system with known properties. In our experiment we perform the calibration by manually measuring the
setup. We assume that the shape of our objects (e.g. humans, cars, ..) are either known or similar enough to
be modeled by a reference mesh. In an extension, this reference model could have additional degrees of freedom
to adapt its shape in certain way (e.g. a scaling factor). As a last step we assume that all materials can be
modeled as Lambertian surfaces with a varying albedo, which we find to be accurate enough in our experiments.
However, it is also be possible to use arbitrary BRDFs inside the rendering to account for arbitrary materials if
the material BRDFs are known or can be measured.

The optimization starts with an initial estimate of the object’s position (usually somewhere in the middle of
the scene). The light transport is computed and compared to the image acquired by the camera. The optimizer
then iteratively adjusts the object translation, until the rendering is close enough to match the captured image.
The best fitting position is then returned as the result.

The pixels of both images are interpreted as entries of huge vectors and compared by computing the euclidean
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Figure 7: Shape of our camera signal. a) Schematic overview over the scene. b) Light reflected from the object
onto the wall. The red rectangle is the view frustum of the camera, the red dot the laser spot on the wall. The
white car silhouette is the object’s shape and size projected onto the wall. c) What the camera actually sees.
The intensity units are arbitrary, but consistent between b) and c).

distance between them. This leads to the following least square minimization problem:

popt = arg min
p

{∥Imeas − S (p)∥2} (1)

with popt as the solution (the optimal transformation parameters), Imeas as the image as measured by the camera
and S (p) as the rendering depending on a parameter set p.

As the rendering of the scene happens inside the optimization, a high rendering speed is crucial. We therefore
drastically simplify the very general path tracing approach used before to a fixed three-bounce scenario (see Figure
6b). As there is no possibility for diverging rays, this approach can be computed very efficiently on a GPU.
We split the object shape into small surfel (surface elements) which only have a position, size and orientation,
but no shape. We then can compute the light transport for each surfel independently and add the intensities to
retrieve to total light reflected by the object. According to the identifiers used in Figure 6b, the distances D and
transported light I from pL to pC are computed by:

D (pL, pC) = ∥pL − pS∥2 + ∥pS − pi∥2 + ∥pi − pW ∥2 + ∥pW − pC∥2 (2)

I (pC , pL) =ai ·
1

∥pW − pi∥22
· 1

∥pi − pL∥22
· ϵ (pL) (3)

· cos ̸ (nW , pi − pW ) · cos ̸ (ni, pW − pi)

· cos ̸ (ni, pS − pi) · cos ̸ (nS , pi − pS)

Where ai is the surfel area, ϵ (pL) the light emitted from the laser and cos ̸ (., .) the clamped angle between
the vectors. With D and I we have all the quantities to compute the transient image of the scene as seen by our
camera. As we use a PMD camera and the reconstruction of transient images from the phase images that the
camera measures is difficult, we transform our synthetic rendering into phase images. To this end we measure
the camera response to various distances and apply it in a straightforward process on the transient image. The
resulting images can then directly be used in Equation 1.

Figure 7 shows the usual shape of our camera signals and gives an intuition of some of the problems that the
optimizer has to deal with. Due to the diffuse reflections, the amount of light diminishes with the fourth power
of the distance from the object to the wall. The result is a very high dynamic range of our camera signal, in case
of the scene shown in Figure 7 almost all light is concentrated on the right side. Furthermore, the peak of the
signal is not within the field of view of the camera in most cases, meaning that the strongest part of the signal
remains unobserved.
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Figure 8: Tracking tool and experimental setup. a) The graphical user interface of our application provides
allows the user to control the tracking process by specifying various options. Additional real time information
about the tracking performance are shown. b) The tracking system consists of a camera and laser, both with
applied lens hoods. The tracked object is a wooden shape that can be freely moved inside the scene.

3.2 Results
Our implementation is written in C++ and uses CUDA to run the rendering part on the GPU. A Qt GUI (see
Figure 8) allows the user to change parameters, load calibration files and control the tracking process. Due to
our rigorous optimizations, we achieve approximately 10 frames per second and therefore real time frame rates.

Our tracking hardware consists of a modified PMDTec camboard nano and a custom built laser light source
attached to it (Figure 8). To avoid lens flare artifacts and stray light from the laser, lens hoods are added to the
camera and the laser.

To evaluate the accuracy of our tracking results, the object is fixated on a tripod and moved along the
three main axes. A series of images is recorded at each position and optimized independently which allows the
computation of the average accuracy and variance at each position (see Figure 9). We find that while the results
have a slight bias, the general movement of the object is still reconstructed faithfully.

4. DISCUSSION AND FUTURE WORK
We presented a framework to compute the transient light transport in arbitrary complex scenes. On two examples
we performed a detailed analysis and showed the various effects that occur. Based on this insights we developed a
novel reconstruction scheme for the problem of indirect vision around corners. Thanks to the drastic specialization
and optimization, our light simulation is fast enough to be used insight a numerical optimization and is therefore
suitable to solve the inverse problem of deducing scene properties from the measurements.

In future work, the limits of our approach should be evaluated. More degrees of freedom, such as rotation,
scaling, moveable joints or other mesh transformations would greatly increase the number of scenes that can
be represented reasonably well, but it is unclear, whether and when the induced signal changes are significant
enough for the numerical optimization to find the correct set of parameters.

We expect that our analysis-by-synthesis approach will become an important alternative to the usual back
projection approach. Especially in situations where more abstract scene parameters (such as the rigid transfor-
mation of an object) are to be reconstructed, we believe our approach to be superior to solutions that require a
voxel grid or height map reconstruction as an intermediate step. Furthermore our approach is very flexible which
allows it to be adopted to many kinds of different hardware (AMCW lidar, streak cameras, SPAD sensors, ...).
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Figure 9: Accuracy Results. The object is moved in discrete steps along the three main axes; at each position
multiple measurements are taken. a) Overview of the setup and range of each axis. b)-d) Reconstruction results
along each axis. The colored lines are the reference value, the error bars show the variance.
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