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Abstract

The computational sensing community has recently seen a surge of works on imaging
beyond the direct line of sight. However, most of the reported results rely on drastical-
ly different measurement setups and algorithms, and are therefore hard to impossible
to compare quantitatively. In this paper, we focus on an important class of approaches,
namely those that aim to reconstruct scene properties from time-resolved optical impulse
responses. We introduce a collection of reference data and quality metrics that are tai-
lored to the most common use cases, and we define reconstruction challenges that we
hope will aid the development and assessment of future methods.

1 Introduction
The challenge of imaging objects outside the direct line of sight is of great potential relevance
in many applications and has fascinated scientists, engineers and the general public alike for
many years. Recently, the introduction of computational sensing approaches has enabled
researchers to “look around corners” and given the topic new momentum [17, 32].

Many published works aim at recovering various scene properties (room geometry, ob-
ject shape and position, materials) from time-resolved measurements of indirect light reflec-
tions. However, the use of different measurement setups with different spatial and temporal
resolution as well as the lack of standard targets and ground truth makes it hard to draw mean-
ingful comparisons between the reconstruction algorithms used, to derive recommendations
for future sensing designs, and to predict the performance of such designs under real-world
conditions. In fact, to this day it remains unknown what the theoretical and practical limits
of non-line-of-sight (NLoS) imaging are.

Here, we take a first step to fill this void by proposing a quantitative foundation that is
designed to facilitate the development, characterization and comparison of non-line-of-sight
reconstruction methods based on time-of-flight data. Our effort is threefold and comprises
the following main contributions:
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• a database of annotated synthetic time-resolved scene responses that reflects common
reconstruction tasks in a hardware-independent manner,

• the development of task-specific error metrics to benchmark reconstruction results,
and

• supporting software infrastructure, namely a code repository and an online service that
hosts a selection of benchmarks and blind reconstruction challenges.

We hope that this quantitative platform will contribute to the consolidation of existing re-
search efforts, aid the development of future reconstruction techniques, and serve the com-
munity as a device for adherence to, and documentation of, good scientific practice.

2 State of the art
We consider works that aim to circumvent the occlusion problem by using electromagnetic
waves where the occluder becomes transparent, such as radio waves [1, 2, 8], or that exploit
coherence properties of light, reconstructing objects using interferometry or speckle corre-
lation [16] to be outside the scope of this paper. Instead, we focus on those that rely on
geometric optics and classic radiative transfer. In the following, we provide an overview of
devices and setups, scene layouts and reconstruction algorithms of these works and conclude
the section with an attempt to unify the most relevant within our quantitative framework.

2.1 Scene setup: three diffuse bounces
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Figure 1: In the most common
scenario of NLoS reconstruction,
the path traveled by the light (laser-
wall-object-wall-camera) consists
of four segments a–d connected by
three diffuse reflections.

An object that is located within the direct line of sight
of a camera or a structured light source can be imaged
either by direct observation or by probing it with a pro-
jector [29]. The challenge of “looking around corners”
refers to settings where the target can neither be directly
illuminated nor observed, and where reflections off other
objects (reflectors) are the only remaining source of infor-
mation.1 The glossiness of these reflectors has a strong
influence on the amount of information they transmit (see
[15] for a detailed analysis of this trade space). The more
mirror-like a surface is, the better it can be used to triv-
ially observe the occluded region; on the other end of the
scale are diffuse surfaces that completely destroy the di-
rectionality of light upon reflection.

This leads to a canonical scene arrangement that has been prominently featured in most
prior works [3, 5, 6, 7, 9, 10, 11, 15, 17, 18, 21, 25, 30, 31, 32, 35] and that is illustrated
in Figure 1. The unknown target is located in front of a planar wall (or floor), and occluded
from direct observation. Illuminating a spot on the wall with a collimated light source (laser)
turns this spot into a small area light source which illuminates the target. A portion of the
light received by the target, in turn, scatters back to the wall, from where it is reflected into
a collimated detector or other imaging device. Eventually, the total path of light received

1This also excludes settings like the one described by Jin et al. [14] that employ a pinhole to indirectly image
the hidden scene.
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(a) (b)
Figure 2: Slices of an unwarped transient image I(u,v,τ) of light reflected by an object onto a wall as
illustrated in Figure 1. u−τ slices (a) resemble streak images, whereas u−v slices (b) can be interpreted
as frames of a video of light in flight. (Range normalized for display.)

by the detector consists of four straight segments connected by three bounces. A common
way of interpreting this setting is to assume that the geometry of capture setup and wall
are known. Similar to treating the laser spot as a virtual area light source, the wall point
observed by the detector pixel can be interpreted as a virtual omnidirectional detector [15].
Only considering the 2-segment light path between these virtual devices leads to a transform
of the time axis that has been called unwarping by Velten et al. [33].

2.2 Space-time impulse response / Devices
The unavailability of a direct line of sight calls for alternative sources of information about
the unknown target. Often, ultrafast light sources and time-resolved detectors are used to
probe the temporal impulse response of the scene. This typically leads to the notion of a
transient image I(u,v,τ), where u and v are the usual image coordinates and τ is the trav-
el time of light (Figure 2). We refer the reader to a recent survey on this general topic
[13]. Among the devices used for the purpose are fast photodiodes [17], streak tubes [32],
gated image intensifiers [21] and avalanche photodetectors [5, 7, 9, 11, 25]. Although com-
mon sense dictates that a high spatial resolution requires a high temporal resolution of the
measurement equipment, other researchers have also demonstrated the use of slower emit-
ters and sensors for certain tasks. Examples include amplitude-modulated continuous-wave
(AMCW) time-of-flight setups [10, 15, 30] or even entirely unmodulated intensity images
[18].

2.3 Reconstruction tasks and algorithms
The non-line-of-sight sensing solutions reported in literature greatly vary in the number of
degrees of freedom, ranging from object detection, identification and tracking [7, 15, 17, 18,
30] via characterization of room shapes [25] to the recovery of full 3D shapes [5, 10, 11, 32].
This also reflects in the variety of proposed algorithms, where we identify two main classes
of approaches. The first class aims to explain the observed signal in terms of a more or
less sophisticated forward model. For instance, researchers have proposed radiative transfer
simulations based on oriented surface patches [17, 18, 25], derived a linearized light transport
tensor [10, 11], and exploited additional geometric constraints to express light transport as
a convolution of light cones [24]. The problem of reconstructing the scene s thus typically
takes on the form of a regularized least-squares minimization of the difference between the
measured and simulated images.

The second class of reconstruction algorithms are based on the backprojection principle,
where intensity values in the space-time response “vote” for feasible object locations within
a reconstruction volume. For each given sample, the manifold of such locations forms an
ellipsoid in space [33].
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We are not aware of any systematic investigation as to which of these approaches is best
suited for a given reconstruction problem. For the backprojection technique, La Manna et
al. compared different flavors (additive/multiplicative backprojection) as well as different
iteration and filtering strategies [20].

3 Challenge design

On the highest level, the non-line-of-sight reconstruction problem addressed in our challenge
is: given the transient image I(u,v,τ), what is the scene s? Here, s can stand for any scene
properties that are of interest, like object or room shapes, object classes, object position and
orientation, material reflectance, texture, and so on. In this section, we aim to unify the
previously discussed work into our proposed evaluation benchmark.

3.1 Basic scene geometry
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Figure 3: Our unified scene
geometry.

The huge variety of setups makes it hard to directly compare
existing approaches and therefore calls for a unification. We
propose a new, minimalistic setup that only consists of the key
elements that are common in the previous setups, as shown in
Figure 3. Our scene only consists of a light source, an object
reflecting the light and the wall receiving the reflections. Cur-
rently all scenes contain only a single object, some examples of
which can be seen in Figure 5a.

Notably, this setup does not include an actual occluder or, in
general, a scene surrounding the wall and the object. In previous
publications it has been usually assumed that these elements do
not interact with the light transport via occlusions or reflections
and thus their existence is usually neglected.

The setup consists of a single laser spot, which is centered on the wall and forms the
origin of the coordinate system. An array of observation points sample the backscatter ar-
riving at the wall. Due to the reciprocity of the light transport, our data can also be used for
methods assuming a single observation and multiple illumination points. We do not include
the most general (five-dimensional) case with multiple observation and multiple illumination
points, as capturing and storing such data would be intractable in practice. Attempts which
require this more general transient images (such as [24]) only use a certain subset of them,
but there is currently no agreement on a specific subset. When a new standard emerges, our
database will be updated accordingly.

Scene objects are placed at different positions inside a volume in front of the wall such
that their projection on the X/Z plane lies always completely inside the wall. This constella-
tion can be considered a sweet spot for the reconstruction, although in practice, placing the
laser spot within the detector’s field of view would make the setup more prone to lens flare.

Almost all previous work assumes perfectly diffuse materials, which is why most of the
objects in our benchmark are perfectly diffuse as well. To probe the limits of the diffusity
assumption, some objects use a shiny metal material, based on the GGX model [34]. S-
ince material reconstruction is not part of the benchmark in this first iteration, all material
parameters are provided.
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3.2 Data units and formats

Our image formation models does not contain any nonlinearities and thus the actual scale
of the setup is irrelevant. The dimensions shown in Figure 3 are derived from an extensive
analysis of the proportions of setups found in the literature (see supplementary). Expressing
the temporal dimension in terms of the optical path length allows us to use the same arbitrary
units for spatial dimensions and time of flight.

With the exception of [18] all considered hardware platforms use time-resolved data
for the reconstruction, but the data format depends on the used hardware. We provide raw
transient data in a generic format that can be converted to any kind of hardware format
(including the intensity images used in [18] by integrating over the time dimension). An
example of a transient image can be seen in Figure 2.

All our data are time unwarped (path segments a and d in Figure 1 are removed), but we
provide a conversion tool in which a camera and laser position can be specified. The tool
inverts the unwrapping, including a cropping and perspective transformation of the reflector
wall. Additional corruption of the data by various noise sources is also possible (see the
supplementary for detail). Contestants are encourage to use these tools to produce realistic
raw data for their setups (including sensor response, additional lens distortion, conversion
to camera data format, and other effects). The results on these data reflect how they be-
have in realistic setups but are not part of the competition as the different setups make them
incomparable.

3.3 Transient image generation

We motivate the usage of synthetic renderings instead of real measurements in two ways:
firstly, each hardware has its own limitations and no setup can capture the actual transient
light transport directly. Secondly, ground truth data is required for the evaluation. Building
and measuring a real scene will inevitably introduce certain errors and would also prevent
the usage of the minimalistic setup shown in Figure 3. Thus synthetic renderings provide
both high-quality transient images and high-quality ground truth data.

As rendering tool, we extended pbrt-v3 [26], a state-of-the-art, multi-purpose global
illumination renderer with special focus on physical accuracy, by tracing the path lengths and
writing three-dimensional transient output. The correctness of the obtained images was veri-
fied as follows: We assume that the intensity images computed by the unmodified pbrt-v3
are physically accurate, as one of its explicit design goals is physical accuracy, it has been
around for many years and its open source code has been studied by hundreds of scientists
worldwide. We integrated transient images over the temporal domain and successfully com-
pared it to the intensity rendering of the same scene, meaning that each transient pixel has
the correct total amount of light. We checked the correct temporal distribution by rendering
test scenes with sharp temporal responses whose time offsets are easily measurable. Lastly,
the importance sampling was successfully verified by rendering the same scene with enabled
and disabled importance sampling to almost full convergence and comparing the results.

Rendering noise-free images with global illumination is computationally expensive and
the additional third dimension of transient images reinforces this problem drastically. The
images are rendered with a spatial resolution of 256×256 pixels and a temporal resolution
of 1600.

For a detailed description of the data formats and renderer implementation, we refer to
the supplementary material.
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3.4 Submission
The datasets for our reconstruction benchmark are available through a web frontend at
https://nlos.cs.uni-bonn.de/. The functionality of the system is inspired by
existing offerings, in particular the known two-view and multi-view stereo reconstruction
challenges. Besides the transient datasets, users can download an SDK with functions for
data handling, error metrics and a base-line reconstruction algorithm, namely ellipsoidal
backprojection.

Users can create an anonymous account to upload their reconstructions and have them
scored against the ground truth. The scores are time-stamped and can be submitted to the
leaderboard (in anonymized or de-anonymized form), where they are compared to the scores
of other contestants.

4 Scenes
We present a set of challenges, each tailored to a specific problem in non-line-of-sight imag-
ing, and introduce appropriate metrics for their evaluation. A complete list of all scenes is
found in the supplementary.

Apart from the four challenges presented here, our platform is open for future exten-
sions ranging from material reconstruction [24], non-rigid pose estimation (like tracking of
articulated human motion) to complex scenes with many detailed objects.

4.1 Materials
Our dataset contains models with two different materials. Non-line-of-sight imaging liter-
ature commonly assumes that the hidden scene is perfectly diffuse. We thus use a diffuse
material (with an albedo of 0.8) for most objects. To reflect real-world situations, we “pol-
lute” our database with roughly 25% objects that are made of a non-diffuse material, namely
pbrt’s default metal material which implements Walter et al.’s GGX model [34]. The mate-
rial parameters k= 3.63 and eta= 0.216 represent copper at a wavelength of 650nm. They
are kept constant throughout the whole benchmark. While this additional variation is not
sufficient to include the reconstruction of material parameters in the challenge, it probes how
well different reconstruction algorithms handle different materials, or how much they are
influenced by the invalid assumption of a diffuse world.

4.2 Geometry reconstruction
The goal of this challenge is to reconstruct the object’s geometry from a single transient
image as illustrated in Figure 4a. For this, sixteen different object types with varying com-
plexity are provided.

In order to evaluate the results, ground truth mesh and reconstructed mesh have to be
compared. There exist a wide variety of classical metrics for mesh comparison employing
measurements of surface distance and curvature [27, 28] or volume [22]. A global com-
parison between two meshes can be achieved using an error metric based on the Hausdorff
distance [19]. However, there is no uniquely best metric and an appropriate choice depends
on the specific scenario.

Since we are dealing with opaque objects and thus the reflected light does not carry any
information about its inside, the application of a surface metric is a natural choice. More
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precisely, we chose to compare triangle meshes, as they are a widely used and easily pro-
cessable surface representation. We define our metric as follows. Let M⊂ R3 be a mesh
described by its triangulation T ⊂ R3×R3×R3. Consider a triangle t := (vt

0,v
t
1,v

t
2) ∈ T

with its corner vertices vt
i . Its center is given by ct = (vt

0 + vt
1 + vt

2)/3 and its area by
At = ‖(vt

1− vt
0)× (vt

2− vt
0)‖/2 in which ‖ · ‖ denotes the Euclidean norm. The asymmet-

ric distance from a triangle meshM0 to another triangle meshM1 is then given by

d (M0,M1) = ∑
t0∈M0

At0

AM0
min

t1∈M1
‖ct0 − ct1‖ (1)

with AM0 = ∑t0∈M0
At0 , and the symmetric distance by

D(M0,M1) = max(d (M0,M1) ,d (M1,M0)) . (2)

Essentially, the average distance per surface area is computed. With G as the ground
truth mesh and R as the reconstructed mesh, we store both distances d (R,G) and d (G,R)
as they represent different quality indicators. For example, d (R,G) = 0 is reached if only a
single point is reconstructed correctly while d (G,R) = 0 is reached when the reconstruction
contains the whole volume. Other properties of this metric are:

• Neutrality of treatment due to area-weighting: every part of the mesh is of the same
importance, standard operations like subdivision are handled appropriately.

• Robustness to incompleteness and overcompleteness: if M1⊂M0, the superfluous
parts ofM0 would not have a good match and thus increase d (M0,M1). Likewise
M0⊂M1 is handled by D(M0,M1). Superfluous geometry far away from the mesh
receives a stronger penalty.

The reflected signals contains mostly information about the front side of the object.
Therefore also only the front sides of objects are considered in the evaluation by filtering
out triangles that face away from the wall.

Some proposed algorithms reconstruct occupancy or probability volumes. Such volu-
metric representations can be converted into triangle meshes using an implementation of
Marching Cubes [23] that is provided as part of the SDK. Contestants concerned about the
triangulation quality are encouraged to use a different implementation.

4.3 Position and orientation tracking

In object tracking the goal is to reconstruct the position and orientation of an object for each
frame resulting in a full trajectory reconstruction, see Figure 4c. For that, different objects
with known and unknown geometries are provided.

For each object there are four different animation tracks: i) object moves along the three
main axes, ii) object rotates around the three main axes, iii) object moves along a complex
path, and iv) object moves along a complex path and adopts its orientation. For each object,
individual paths are used.

Animation tracks are limited to 40 frames to keep the database size manageable, where
each frame consists of a position (the objects center of mass) and an orientation. Two paths P
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(a) (b) (c)
Figure 4: (a): Exemplary geometry reconstruction. The basic shape of the bike object (blue) is rec-
ognizable in the reconstruction (green), however details like saddle, pedals and handlebar are missing.
(b–c): Trajectory reconstruction. (b): The ground truth trajectory is shown in blue, the reconstructed
in orange. (c): After subtracting a constant offset, the trajectories are close together, except for two
outliers.

and P′ with P = (p0, p1, . . . , pn−1)
T with pi = (px

i , py
i , pz

i ) ∈ R3 are compared by computing
the root-mean-square (RMS) error:

‖P−P′‖pos =

√
1
n

n−1

∑
i=0

∥∥pi− p′i
∥∥2
. (3)

Since this metric penalizes outliers, contestants are encouraged to apply appropriate outlier
detection and removal, e.g., by comparing the result to neighboring time frames. Further-
more, the computed centers of mass of the objects might be biased, so a least-squares optimal
constant offset x between P and P′ is computed.

For the evaluation, the minimal path distance S = ‖(P− x)−P′‖pos, the length of the
offset ‖x‖ and the completeness (the number of reconstructed frames divided by the total
number of frames) are evaluated.

Orientations are treated in a similar fashion: given orientations q and q′ in quaternion
representation, the difference is computed by the unit quaternion dot product metric

‖q−q′‖quat = 1−
∣∣〈q,q′〉∣∣ ∈ [0,1] ,

where |〈·, ·〉| denotes the absolute value of the dot product between the four components of
the quaternions [12]. Defining the original orientation of the object is not as straightforward
as defining its origin as its center of mass. Therefore the initial orientation for the first frame
of each animation is given, and thus only n− 1 frames are evaluated. With this metric, the
orientation reconstruction accuracy is evaluated analogously to the path distance, including
the completeness score.

4.4 Classification
The goal of the classification challenge is to accurately determine the type of an object. For
that we provide a classification data set which consists of eleven known models, see Figure
5a. Each model is rendered at various positions and orientations inside the usual volume. The
goal is to decide for each scene, which of the objects is shown. This challenge is expected to
be the easiest as the possible output has a very limited range.

Classification results are evaluated in a confusion matrix using the harmonic average of
precision and recall (F1 score). In general, fuzzy classification is used; algorithms that do a
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(a) (b) 4×4 (c) 16×16 (d) 128×128
Figure 5: a) Classification data set. Overview of the eleven different models used for the classifica-
tion challenge. b-d) Examples textures from the texture reconstruction challenge. The textures have
different resolutions and different color depths.

hard classification consequently restrict their weights to 0 and 1. If no solution is provided
for a certain frame, identical weights for all classes are assumed.

4.5 Texture reconstruction

For the texture reconstruction challenge, a known, planar geometry is set up in parallel to the
reflector at a specified position. It has varying textures which have to be reconstructed. They
are split in three classes with increasing resolution and color depth (4×4 pixels in black and
white, 16×16 pixels in 5 gray values, and 128×128 pixels in 256 gray values). Examples of
the different classes can be seen in Figure 5.

Non-line-of-sight texture reconstruction has some unique characteristics that need to be
taken into account, when a comparison metric is defined. Although no publication so far
directly tackled the problem of texture reconstruction, a few have reconstructed flat letters, a
problem that is similar in nature. Based on these results we expect reconstructed texture to
cover the low-frequency content better than the high-frequency details. Thus we propose a
multi-scale approach which compares different frequency bands independently.

Given an n×n-pixel texture T ∈ [0,1]n×n in which n is a power of 2, we compute a
Laplacian pyramid by iteratively blurring and downsampling T , and storing the differences
between the steps in the individual pyramid layers [4]. This essentially decomposes the
image into its different frequency components.

Let T n,T n/2, . . . ,T 1 respectively T ′n,T
′
n/2, . . . ,T

′
1 denote the individual pyramid layers.

The differences between each layer are computed by applying the Frobenius norm ‖ · ‖F
onto the texture difference T n−T ′n and normalizing the result by n2. This allows for quality
measurement on different scales, e.g., by taking the square root of the average squared per-
pixel differences √

‖T n−T ′n‖2
F

n2 ,

√
‖T n/2−T ′n/2‖

2
F

(n/2)2 , . . . , |T 1−T ′1|. (4)

Next to these quality indicators on each scale, its (uniformly weighted) squared average value

‖T −T ′‖img =

√√√√∑
log2(n)
i=0 ‖T n/2i −T ′n/2i‖2

F/(n/2i)2

log2(n)+1
(5)

is used as a quality metric.

Citation
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5 Reconstruction results

With the exception of Arellano et al. [3], reconstruction code is not available, making the
comparison challenging. We therefore seed our reconstruction challenge with the de-facto
standard reconstruction method, ellipsoidal backprojection, using the implementation of [3].
Its generality and ubiquity (as well as the lack of general-purpose alternatives) makes back-
projection a natural baseline for current and future work. Although the method itself can
only be used for geometry reconstruction, we implemented a straightforward extension for
position tracking (where the object position is defined as center of mass of the reconstructed
volume). We imagine that adaptations to the other challenges can be developed as well, but
consider this to be beyond the scope of this benchmark.

Results of the geometry reconstruction and object tracking are shown in Figure 4. Exact
numbers for each scene are found in the supplementary material.

6 Discussion and outlook

In this paper we introduced methodology and a data foundation for a first reconstruction
benchmark for non-line-of-sight imaging. The research in the field so far resembles a col-
lection of isolated data points, most of them with promising and inspiring results but without
strong links to other pieces of work. Of course, in light of the diversity of tasks, scales and
devices, all a database like ours can ever hope to provide must be a compromise. Neverthe-
less, we hope that this work can act as a seed for a continuing effort to draw quantitative
connections between past and future efforts that will further unify the field.

As the research advances, we plan to constantly update the database with new reconstruc-
tion problems and realistic data (e.g. light scattered from the scene background that needs
to be filtered out by contestants). We also hope that more researchers will be willing to
share their reconstruction code in order to build an open source repository of reconstruction
algorithms.

The database, the submission system, and all other material is available on our website at
https://nlos.cs.uni-bonn.de/.
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