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Abstract

Sight is perhaps the most important sense of the human species. But while it allows us to
gain a near-instant understanding of our surrounding, it has a fundamental limitation: An
object can be hidden from view if it is occluded by an obstacle such as a building or a car.
To reveal it, techniques for looking around a corner are required, which became only recently
available through the use of computational photography.

In most common setups, a laser is used to illuminate a diffuse wall in the visible part
of the scene from where the light can bounce off towards the hidden object. From the
object, the light is reflected back onto the wall in the visible part of the scene, where it can
be detected by a camera. Typically, the camera is a transient imaging camera, which can
temporally resolve the propagation of light through the scene when it is illuminated by a
synchronized laser. This then allows the recording of temporal light profiles on the reflector
wall. The diffuse reflections destroy most of the angular information of where the light was
coming from, but leave the temporal offset (caused by the travel time of the photons) intact.

The measured signal is a three-dimensional transient image in which the hidden object
is not directly visible. It does, however, encode information about the hidden object which
can be used together with physically based models of indirect light transport to attempt
a reconstruction of the hidden object. Such a reconstruction is a challenging task which
becomes apparent in the limitations of today’s system. It thus remains an active field
of research that receives high interest from both academia and industry due to its many
potential applications.

In this thesis we address some of the main limitations to help the field of indirect vision
advance into product-ready technology. Our solutions are presented as a cumulative thesis
consisting of three peer-reviewed publications:

In the first publication, we present a novel approach for real-time tracking of hidden
objects. So far, setups have relied on expensive hardware and required lengthy reconstruction
time. We argue, that sometimes it is more important to have real-time information about
the position and movement of a target than a more precise three-dimensional reconstruction
that takes minutes to obtain. Furthermore, the analysis-by-synthesis scheme that we use
is extensible and works with different types of hardware including non-transient intensity
cameras like webcams.

In the second publication, we present a comparison and evaluation platform for the mul-
titude of reconstruction approaches that have been published in the previous years. The
results from different research groups are usually coming from different hardware, scenes,
reconstruction targets and setup scales. This makes results hard to compare, for example,
when two camera system have very different signal-to-noise ratios or a scene is more chal-
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Abstract

lenging than another. In our benchmark, we provide a unified measurement data set that
allows to run different reconstruction algorithms on the same input date and also domain
specific evaluation metrics to compare the reconstruction results.

In the third publication, we present a flexible calibration algorithm that does not rely
on any additional hardware. In order to estimate possible light interactions in the hidden
part of the scene, knowledge about the directly visible part of the scene is used. Meth-
ods for capturing three-dimensional scenes are established but the requirement of additional
hardware would increase the complexity of indirect vision systems even further. Our calibra-
tion method only facilitates an additional household-grade mirror which makes it especially
suitable for the stage of lab testing in which most of the current research progress happens.

In conclusion, we present a range of contributions that partake in the global efforts of
making indirect vision systems available as an additional corner stone of future vision tasks.
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Zusammenfassung

Das Sehen ist die vielleicht wichtigste Sinneswahrnehmung des Menschen. Es erlaubt uns in
Sekundenbruchteilen unsere Umgebung einschätzen zu können, hat dabei jedoch eine funda-
mentale Einschränkung: Ein Objekt kann nicht gesehen werden, wenn es durch ein anderes
verdeckt wird. Um es dennoch sichtbar zu machen bedarf es Techniken zum um-die-Ecke-
sehen, die erst kürzlich in dem Feld der Computational Photography (computergestützte
Fotografie) entwickelt wurden.

Im üblichen Versuchsaufbau beleuchtet ein Laser eine diffus reflektierende Oberfläche
(etwa eine Wand) in dem sichtbaren Teil der Szene. Von dort aus können Photonen in
Richtung des verdeckten Objektes reflektiert werden, welches sie wieder zurück in Richtung
Wand wirft, wo sie schließlich von einer Kamera wahrgenommen werden können. Typischer-
weise wird dazu eine Transient-Imaging-Kamera verwendet, die die Lichtausbreitung eines
synchronisierten Lasers in der Szene zeitlich auflösen kann. Dadurch wird es möglich, ein
Zeithistogramm der Lichtstärke auf der Reflektorwand zu messen. Die diffusen Reflektio-
nen zerstören zwar den überwiegenden Teil der Winkelinformationen (aus welcher Richtung
das Licht kam), die unterschiedlichen Flugzeiten unterschiedlicher Photonen bleiben jedoch
erhalten.

Das gemessene Signal ist ein dreidimensionales, transientes Bild in dem das verdeckte
Objekt nicht direkt zu erkennen ist. Es enthält aber kodierte Informationen über das Ob-
jekt, die unter Zuhilfenahme von physikalischen Modellen der indirekten Lichtausbreitung
für eine Rekonstruktion verwendet werden können. Solch eine Rekonstruktion ist eine sehr
herausfordernde Aufgabe was auch in den Limitierungen aktueller Systeme deutlich wird.
Es bleibt daher ein aktives Forschungsfeld, das durch sein vielfältiges Anwendungspotential
von großem Interesse sowohl für die akademische Welt als auch für die Industrie ist.

In dieser Doktorarbeit werden im Rahmen von drei begutachteten Veröffentlichungen
einige der wichtigsten Einschränkungen adressiert und das Forschungsfeld der indirekten
Sicht so ein Stück weiter in Richtung Produktreife gerückt:

In der ersten Veröffentlichung stellen wir ein System vor, dass verdeckte Objekte in Echt-
zeit nachverfolgen kann. Bisher war die Rekonstruktion verdeckter Objekte nur mit teurer
Hardware und langen Rekonstruktionszeiten möglich. Wir argumentieren, dass es in manchen
Situationen nützlicher ist, Echtzeitinformationen über die Position und Bewegungsrichtung
eines Objektes zu kennen, anstatt minutenlang auf eine komplette dreidimensionale Re-
konstruktion zu warten. Außerdem ist unser verwendetes Analyse-durch-Synthese-Verfahren
vielseitig erweiterbar und kann mit vielen Hardwaretypen angewandt werden, darunter auch
nicht-transiente Intensitätskameras wie Webcams.

In der zweiten Veröffentlichung stellen wir eine Evaluationsplattform vor, welche die
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Zusammenfassung

verschiedenen Rekonstruktionsansätze der letzten Jahre vergleichbar macht. Die Ergebnisse
verschiedener Forschungsgruppen wurden üblicherweise auf sehr unterschiedlicher Hardware,
Messaufbauten und Szenen erzielt. Dies macht sie kaum vergleichbar, da beispielsweise un-
terschiedliche Kameras stark unterschiedliches Rauschverhalten haben können, oder eine
Szene komplexer ist, als eine andere. Unser Benchmark liefert einheitliche Messdaten die für
eine Vielzahl an Rekonstruktionsalgorithmen als Eingabe dienen können und darüber hinaus
angepasste Evaluationsmetriken mit denen die Rekonstruktionsergebnisse verglichen werden
können.

In der dritten Veröffentlichung stellen wir ein neuartiges Kalibrierungsverfahren vor, das
keine zusätzliche Hardware benötigt. Zur Rekonstruktion verdeckter Objekte wird häufig
die Geometrie des sichtbaren Teils der Szene benötigt. Diese kann zwar mit etablierten Me-
thoden erfasst werden, dazu wird jedoch zusätzlich Messhardware benötigt was den Aufbau
indirekter Sichtsysteme weiter verteuert. Unser Kalibrierungsansatz benötigt hingegen le-
diglich einen handelsüblichen Spiegel und ist damit insbesondere für die Kalibrierung von
Laboraufbauten geeignet.

Zusammengefasst stellen wir in dieser Arbeit eine Reihe an Beiträgen vor, die zu den
weltweiten Anstrengungen, Indirekte-Sicht-Systeme in der Messtechnik zu etablieren, bei-
tragen.
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CHAPTER 1

Introduction

In the field of computer vision we teach machines to perceive their surroundings through
optical measurements. While traditional digital photography merely aims at recreating a
two-dimensional image, computer vision puts a strong emphasis on scene understanding and
the extraction of higher level information which are used in a vast amount of applications: 3D
scanning enables robots to navigate their environment, medical imaging uncovers fractures
and abnormal tissue, objects are augmented with bar codes or QR markers to allow fast and
reliable scanning, artificial intelligence algorithms recognize objects and distinguish faces,
optical guidance system steer missiles, and even science fiction-like technologies such as
autonomous driving are enabled largely by computer vision.

In this thesis we present research work centered around the idea of non-line-of-sight
(NLoS) imaging. Traditional camera systems perform line-of-sight imaging in which the
image contains only the parts of the scene that are directly visible to the camera; i.e. the
scene points that can be connected with the camera by a straight, uninterrupted line. This
results in a two-dimensional projection of the three-dimensional scene, a process through
which only a small part of the information contained in the scene is preserved. Everything
that lies outside the field-of-view of the camera or that is occluded by some other object will
not be visible in the image.

The human eye shares the same limitation and efforts to overcome it can be dated back
as long as 8000 years to the oldest known use of mirrors which were found in Neolithic
settlements in modern-day Turkey [Eno06]. Several thousand years later mirrors and lenses
were then used to build periscopes (from the Greek Peri (around) and skopein (seeing)),
to look around objects in a NLoS fashion (see Figure 1.1a). They were first described in
Hevelius’ Selenographia sive lunae descriptio in 1647; however, he used the term Polemoskop
for it [Hev47, p. 26].

While periscopes can only be used to look behind occluders that are relatively close (closer
than the periscope is long), this limitation was overcome by the introduction of modern day
NLoS imaging. Figure 1.2 shows a traffic scenario in which the driver cannot see the cyclist
since a house is occluding the view. However, the car is equipped with a NLoS imaging
system that aims a laser beam at a second house. From there the light is reflected into
the hidden part of the scene (where the cyclist is), and back onto the wall where it can
be observed by a camera. It is important to note that the whole system resides inside the

1



Chapter 1. Introduction

(a) Periscope (b) Empedocles

Figure 1.1: (a) The various parts of a periscope, as sketched by Johannes Hevelius in 1647.
The light is guided through the tubes by mirrors, adding an offset to the line of sight and thus
allowing to look around objects. (public domain, taken from [Hev47]); (b) Greek philosopher
Empedocles (c. 494 – c. 434 BC), who reasoned about the nature of sight (public domain,
taken from [Sta55])

car, the house acts as an accidental reflector and is viewed as part of the scene and not the
imaging system.

Many NLoS imaging systems are based on transient imaging, a technique that aims to
resolve the time delay of a light pulse traveling through a scene. In Figure 1.2 the car thus
measures the length of the light path traveling from the car to the house, the cyclist, the
house again, and back to the car. When different points on the wall are used, this path
length changes as well and the hidden scene is reconstructed from this information.

This active imaging approach was already foreshadowed by the Greek pre-Socratic philoso-
pher Empedocles (see Figure 1.1b). In his work On Nature (written in verse) he describes the
eye as containing fire from which the vision emerges [Bur08, p. 252, 287]. This theory was
superseded in Alhazen’s Book of Optics by the modern view of light traveling from a source
towards the eye [Has21], but is surprisingly still held by many laymen today [Win+02].
In active imaging, both principles are combined to extend the capabilities of traditional
systems.

The term NLoS imaging, as used in this thesis, describes approaches that attempt to
view around occluders (like a periscope). Approaches to look through occluders exist as well
(for example in medical x-rays), but are not in the main scope of this thesis.

The field of NLoS imaging is progressing rapidly and there are multiple areas of appli-
cation in which such systems would be beneficial. With the advent of autonomous driving,
traffic safety in scenarios such as the one depicted in Figure 1.2 is increased if the car can
recognize the cyclist, and initiate the braking process earlier. In search and rescue missions
a NLoS imaging device could be used to find trapped people and rescue them. Similarly,
there are many applications in remote sensing and threat prevention. Further down the
line, it could also become feasible to utilize NLoS imaging for medical applications such as
endoscopy.

Today’s limitations in NLoS imaging arise from some principal challenges: The diffuse

2



1.1. Contributions

Figure 1.2: Non-line-of-sight imaging. The car is equipped with a laser (red) and a camera
(blue field of view). A house wall is used to bounce light to and from the hidden part of the
scene (yellow arrows) and thus the driver can ’see’ the cyclist around the corner.

reflections destroy angular information and greatly weaken the intensity of the returned signal
which in turn increases noise. In order to reconstruct anything at all strong assumptions
need to be made, such as assuming the shape of the setup is known, the hidden scene is
empty except for the object, the scene is static, materials are known, and the overall setup
size is limited. Most work presented so far is therefore much closer to an in-lab proof of
concept, rather than an usable product.

1.1 Contributions
Some of these main challenges of NLoS imaging are addressed by our work:

• Especially in their early days, NLoS imaging systems have often been slow and ex-
pensive. Real-time information of hidden objects is an obvious requirement for many
applications such as autonomous driving and using cheap and widespread compo-
nents as hardware basis helps widespread usage. In J. Klein et al. 2016 we present a
NLoS imaging system that can track objects in real time with consumer-grade hard-
ware [Kle+16].

• To understand the signal characteristics of NLoS setups, synthetic transient renderings
are an invaluable tool. Apart from judging whether a certain approximation of the
light transport is suitable for a given application, synthetic renderings are also used as
training data for machine learning based approaches.
In J. Klein et al. 2018 we extended a physically based steady state renderer by a tran-
sient component to render highly realistic NLoS images [Kle+18]. In J. Klein et al. 2016
we use a less accurate but much faster renderer for inverse problem solving [Kle+16].
Finally, in J. Klein et al. 2016 we provide an in depth analysis of transient images to
gain understanding of how light propagates through a scene [KLH16].

3



Chapter 1. Introduction

• Ongoing research has lead to a wealth of different setups and reconstruction methods.
Since new methods are often evaluated on hardware available to a particular research
group and custom-built evaluation scenes, direct comparison of reconstruction results
from different groups is often impossible. We therefore provide a test suite of universal
input data and evaluation metrics in J. Klein et al. 2018 [Kle+18]. With these, results
from different reconstruction algorithms are directly comparable and are listed in an
online benchmark.

• NLoS imaging algorithms often require geometrical knowledge of the visible part of
the scene for calibration. Although extensive research and well established methods
for the scanning of line-of-sight scenes exist, naively adding those to a NLoS imaging
system usually requires additional hardware. In J. Klein et al. 2020 we thus develop a
calibration method that does not require any additional hardware and can be plugged
in into a large variety of existing solutions [Kle+20]. Such kind of automatic calibration
is helpful to transfer systems from lab environments to real-life situations.

1.2 List of publications
Here we give a list of all publications the author has contributed to during his PhD studies.

1.2.1 Publications in this thesis
The main part of this cumulative thesis is formed by these peer-reviewed, first author pub-
lications:

• Jonathan Klein, Martin Laurenzis, Matthias B. Hullin, and Julian Iseringhausen. “A
Calibration Scheme for Non-Line-of-Sight Imaging Setups” In: Optics Express (2020)
[Kle+20]

• Jonathan Klein, Martin Laurenzis, Dominik L. Michels, and Matthias B. Hullin. “A
Quantitative Platform for Non-Line-of-Sight Imaging Problems” In: British Machine
Vision Conference (BMVC) (2018) [Kle+18]

• Jonathan Klein, Christoph Peters, Jaime Martín, Martin Laurenzis, and Matthias B.
Hullin. “Tracking objects outside the line of sight using 2D intensity images” In:
Scientific Reports (2016) [Kle+16]

1.2.2 Additional publications on non-line-of-sight imaging
The following additional publications on NLoS imaging are either co-authored, not full papers
or invited publications:

• Martin Laurenzis, Jonathan Klein, Emmanuel Bacher, and Stephane Schertzer. “Ap-
proaches to solve inverse problems for optical sensing around corners” In: SPIE Secu-
rity + defense: Emerging Imaging and Sensing Technologies for Security and Defence
IV (2019) [Lau+19]
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• Jonathan Klein, Martin Laurenzis, and Matthias B. Hullin. “Wenn eine Wand kein
Hindernis mehr ist” In: photonik (2017) [KLH17]

• Jonathan Klein, Christoph Peters, Martin Laurenzis, and Matthias B. Hullin. “Non-
line-of-sight MoCap” In: ACM SIGGRAPH Emerging Technologies (2017) [Kle+17b]

• Martin Laurenzis, Jonathan Klein, and Frank Christnacher. “Transient light imaging
laser radar with advanced sensing capabilities: reconstruction of arbitrary light in flight
path and sensing around a corner” In: SPIE Laser Radar Technology and Applications
(2017) [LKC17]

• Martin Laurenzis, Andreas Velten, and Jonathan Klein. “Dual-mode optical sensing:
three-dimensional imaging and seeing around a corner” In: SPIE Optical Engineering
(2017) [LVK17]

• Jonathan Klein, Martin Laurenzis, and Matthias B. Hullin. “Transient Imaging for
Real-Time Tracking Around a Corner” In: SPIE Electro-Optical Remote Sensing
(2016) [KLH16]

• Martin Laurenzis, Frank Christnacher, Jonathan Klein, Matthias B. Hullin, and An-
dreas Velten. “Study of single photon counting for non-line-of-sight vision” In: SPIE
(2015) [Lau+15a]

• Martin Laurenzis, Jonathan Klein, Emmanuel Bacher, and Nicolas Metzger. “Multiple-
return single-photon counting of light in flight and sensing of non-line-of-sight objects
at shortwave infrared wavelengths” In: Optics Letters (2015) [Lau+15b]

1.2.3 Additional publications on transient imaging
The following co-authored papers were published the related field of transient imaging:

• Martin Laurenzis, Jonathan Klein, Emmanuel Bacher, Nicolas Metzger, and Frank
Christnacher. “Sensing and reconstruction of arbitrary light-in-flight paths by a rela-
tivistic imaging approach” In: SPIE (2016) [Lau+16]

• Martin Laurenzis, Jonathan Klein, and Emmanuel Bacher. “Relativistic effects in
imaging of light in flight with arbitrary paths” In: Optics Letters (2016) [LKB16]

• Shuochen Su, Felix Heide, Robin Swanson, Jonathan Klein, Clara Callenberg, Matthias
B. Hullin, and Wolfgang Heidrich. “Material Classification Using Raw Time-of-Flight
Measurements” In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016) [Su+16]

• Christoph Peters, Jonathan Klein, Matthias B. Hullin, and Reinhard Klein. “Solving
Trigonometric Moment Problems for Fast Transient Imaging” In: ACM Transactions
on Graphics (SIGGRAPH Asia) (2015) [Pet+15]
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1.2.4 Other publications
In an extension of his main research focus, the author also published in other fields (where
J. Klein et al. 2020 is not yet peer-reviewed):

• Jonathan Klein, Sören Pirk, and Dominik L. Michels. “Domain Adaptation with
Morphologic Segmentation” In: arXiv preprint (2020) [KPM20]

• Elena Trunz, Sebastian Merzbach, Jonathan Klein, Thomas Schulze, Michael Wein-
mann, and Reinhard Klein. “Inverse Procedural Modeling of Knitwear” In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2019) [Tru+19]

• Jonathan Klein, Stefan Hartmann, Michael Weinmann, and Dominik L. Michels. “Multi-
Scale Terrain Texturing using Generative Adversarial Networks” In: IEEE Conference
on Image and Vision Computing New Zealand (IVCNZ) (2017) [Kle+17a]

1.3 Thesis outline
The remainder of this thesis is organized as follows:

In Chapter 2 the theoretical background on NLoS imaging and transient imaging includ-
ing relevant hardware types, image formation model, synthetic data generation and back
projection based reconstruction are explained. Chapter 3 gives an detailed overview of the
historical development and current state-of-the-art in NLoS imaging, including a discussion
of problems related to NLoS imaging. In Chapter 4 we present our method for real-time
tracking of hidden objects using consumer-grade hardware. In Chapter 5 we present our
NLoS reconstruction benchmark and describe available scenes and evaluation metrics. In
Chapter 6 we present our method for the calibration of the line-of-sight part of the scene
that does not rely on any additional hardware. Finally, Chapter 7 discusses our research in
the light of the development that took place after its publication including the impact our
work already had and possible extensions of it.
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CHAPTER 2

Background

This chapter discusses the basic idea of non-line-of-sight (NLoS) imaging as well as the the-
oretical and practical foundations of it. It starts with a brief discussion of various other
methods in the more general field of indirect vision. Next, the idea transient imaging (cap-
turing the propagation of light through a scene) is introduced, including an overview of
various hardware setups for it. Transient imaging is then used as a fundamental building
block for transient NLoS imaging, on which this thesis focuses.

The term NLoS imaging is not used consistently throughout the literature and a num-
ber of variations and alternatives have been proposed over the years. These include (in
chronological order): Looking around corners [Kir+09], non-line-of-sight imaging [Pan+11],
sensing hidden objects [Gup+12], diffuse mirrors [Hei+14], and occluded imaging [Kad+16].
However, NLoS imaging has been established as the most popular one and is thus used
throughout this thesis.

Indirect vision

Looking around objects

Transient imaging Penumbra Speckle pattern

Looking through objects

Turbid media Diffusor Opaque media

(Chapter 3.1 - 3.3) (Chapter 3.4)

Figure 2.1: Taxonomy of indirect vision methods. This thesis is mostly concerned with
transient imaging-based looking around objects. The distinction of methods follows different
dimensions: temporal shape of measurement (orange), spatial shape of measurement (green),
and occluder transparency (blue).
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Chapter 2. Background

2.1 Taxonomy of indirect vision

NLoS imaging is a part of the larger field of indirect vision which covers all types of methods
to image objects that are in some sense not directly visible. In almost all cases active illumi-
nation (a user-controlled light source) is used to achieve more control over the measurements.
A taxonomy of the field is shown in Figure 2.1.

When the direct line of sight is blocked, attempts can be made to either look through the
occluder or around it. In the first case, different types of occluders require different types
of reconstruction methods: Turbid media such as fog or muddy water will scatter the active
illumination and create large amounts of stray light. While some light might still travel from
the camera to the object and back, this signal is overlayed with the noise of the reflections
of the turbid medium. Laurenzis et al. model this as a superposition of two signals and
use time-gated imaging to separate them [Lau+12]. However, this approach requires a
sufficiently long mean free path length in the turbid medium.

For diffusors such as frosted glass, there exist (almost) no free paths from the object to
the camera and all of the signal is distorted. If the diffusor is reasonably thin, the distortion is
similar to a diffuse reflection where all angular information is lost but some spatial variation
still remains. This case is therefore similar to NLoS imaging where the diffusor takes the
role of the relay wall and similar algorithms can be applied to reconstruct the object (see
Section 3.4 for more details).

Finally, some opaque objects like cinder blocks are transparent in non-visible wavelengths
(such as radio waves) and imaging through them becomes possible using an appropriate
wavelength [KM17]. This approach is probably most familiar to the layman from medical
X-rays.

For imaging around occluders, a large variety of setups and methods have been proposed.
In most setups an optical signal from the hidden object reaches the camera by bouncing
off of a diffuse reflector (such as the house in Figure 1.2) which by the nature of diffuse
reflection will destroy all angular information (i.e. from which direction the light arrived
before reflection).

Apart from some methods that work on pure intensity data (such as our own work in
Chapter 4), the lost angular information is replaced by some other type of information which
can be used for reconstruction. When the light source emits coherent light, speckle patterns
form on the reflector that depend on the relative phase differences and encode geometric
information about the scene that can be used for reconstruction. Similarly, occluders in the
hidden scene make objects only visible from parts of the reflector wall and thus measur-
ing multiple positions of the penumbra (half shadow) gives clues about where the light is
coming from. Both the usage of coherent light and the addition of occluders in the scene
therefore create additional spatial detail in the measured signal. Some examples of these
two approaches are discussed in Section 3.4.

Lastly, the most popular choice and focus of this thesis is the use of transient imaging
which adds an additional temporal dimension in the scale of the speed of light to the intensity
measurements. Since light can arrive at the same point on the reflector from many locations
at different distances, this temporal dimension is measured as a transient histogram which
describes how much light arrived at each point in time. Although the spatial dimension of
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2.2. Transient imaging

the signal is used here as well (as the transient histograms are different at different spatial
measurement positions), the spatial resolution is usually significantly lower than for speckle-
based or occlusion-based approaches.

In the rest of this thesis, NLoS imaging stands for imaging around occluders using tran-
sient imaging, if not stated otherwise.

2.2 Transient imaging

Transient imaging is an umbrella term for various methods to measure the arrival time of
light at the sensor.

Since the speed of light is finite, a scene is not immediately illuminated when a light
source is turned on. Rather, different objects are illuminated in the order of their distance
to the source as the light travels through the scene. The time scale for this process is very
small (about 1 ns per 30 cm) and it is usually ignored in normal imaging applications. In
transient imaging, however, the goal is to record and make use of this effect.

Commonly cited as the first transient image is the work of Abramson, who used a holo-
graphic approach to record a wavefront that is partially reflected by a mirror [Abr78]. More
recently, Velten et al. used a streak camera and a femtosecond laser to record a high resolu-
tion video of the propagation of light through a plastic bottle [Vel+13].

Since normal light sources (like candles or ceiling lights) emit a continuous stream of
photons, different path lengths can not be distinguished for these sources. Thus transient
imaging commonly relies on a light source that is synchronized with the detector and those
two form a single active imaging system.

Figure 2.2 shows two examples of transient images. In both, the light source illuminates
the scene with a short pulse and is placed close to the position of the camera, which causes
the car in the second scene to cast a visible shadow. The transient image can then be thought
as a video of light propagating through the scene.

In the corner scene, the light propagates down the walls towards the corner (Figure 2.2c),
which is the point in the scene that is furthest away from the camera. In d) through f)
reflections between the walls are visible; they have a distinct delay due to the longer path
length. In g) and h) only higher order reflections are visible, and the scene exhibits some
sort of afterglow close to the intersections of the walls. This is also visible in the histogram
in b), where the intensity fall-off is much longer than the rise in the beginning.

In the second scene, a complex car model is added which drastically increases the amount
of interreflections. Notably the shadow of the car (best seen in the intensity image in a))
occurs in the primary wavefront (seen in f) and g)) but not in the indirect reflections in h).

For scenes where the light source does not coincide with the camera, apparent velocities
of the wave do not necessarily correspond to the speed of light but are rather superluminal
or subluminal [LKB16]. This optical illusion often makes the understanding of transient
images prone to misinterpretation.

A more exhaustive treatment of recent advances in transient images can be found in
Jarabo et al. 2017 [Jar+17].
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Corner scene
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Figure 2.2: Transient images of two scenes. a) Intensity image of the scene. b) Transient
histogram of the scene with frame markers. c)-h) 6 frames from the transient image at times
marked in the histogram. (Figure previously published in [KLH16])
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2.2. Transient imaging

2.2.1 Hardware
There are a number of hardware platforms available which can be used to measure transient
images. Important characteristics are temporal resolution, capture speed, form factor, noise
level, and price.

Time-gated cameras

Time-gated cameras are a class of hardware setups that consist of a pulsed laser and a time-
gated detector. The detector has a shutter speed in the nano-second range which can be im-
plemented with different hardware components such as Kerr-cells [Kal+93], ICCDs [BH04],
or EBCCDs [Wil+95]. The pulse length of the laser and the shutter of the detector define the
temporal resolution of the system. Since light is filtered depending on its traveled distance,
this imaging modality is commonly called range-gated imaging.

Range-gated imaging has been studied since the 1960s [Gil66; SS69]. A prominent use
case is imaging through turbid media (such as submarines in muddy water or a car driving
through fog), where the range gate can be used to remove stray light from particles floating
in front of the object of interest. This drastically increases contrast and can extend the
visible range by a factor of 2 to 3 [LV14].

In default operation mode, the recorded image is not so much time-resolved as time-
cropped. But by sweeping the timing of the gate over a series of measurements a time
resolved image can be retrieved after some post-processing [BH04; And06; LCM07].

Streak cameras

Streak cameras record images with one spatial and one temporal dimension on a two-
dimensional image sensor by smearing a one-dimensional line over the sensor over the course
of the capture time [Ham08]. The scene is illuminated by an ultra-short pulse of light. Inside
the camera, incoming photons hit a photocathode and release electrons which are deflected
by a time-varying electric field so that early electrons go towards the top of the sensor and
late photons towards the bottom. Although this process allows only the capturing of a single
scan line, the achieved temporal resolution is in general higher than for most other systems.
Full two-dimensional images can be recorded by sweeping the scanline across the scene and
combining the individual measurements. This, however, requires careful calibration and can
increase the overall capture time drastically, depending on the desired resolution.

Streak cameras were the first cameras used for NLoS imaging [Nai+11; Pan+11; Vel+12].
However, due to their high price and slow operation speed, alternatives were soon considered.

AMCW Lidar

Amplitude-modulated continuous-wave (AMCW) lidars (LIght Detection And Ranging) il-
luminate the scene with a continuous wave whose amplitude is modulated in the scale of
the scene. On the sensor, the incoming light is correlated with the reference modulation
signal from the light source. By some post-processing, the phase of the incoming light can
be determined.
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Correlation time-of-flight (ToF) sensors (such as the Photonic Mixer Device (PMD) are
a lidar technology that allows for cheap multi-pixel sensors with up to 40,000 pixels for in-
dependent, parallel measurements [Sch+97]. They are mostly used for range imaging (e.g.
in the Microsoft Kinect v2 camera) since they cannot directly measure a full transient im-
age. However, when multiple measurements of different frequencies are combined, individual
paths can be distinguished [Kad+13; KBC13; Dor+11] or even full transient images com-
puted [Hei+13; Pet+15].

Although some NLoS related work using AMCW cameras has been presented [Hei+14],
the difficulties of measuring transient images directly makes them a somewhat unpopular
choice. As widely used consumer hardware they are however small and cheap.

SPAD

Single-photon-avalanche-diodes (SPAD) contain photo diodes in which a single photon trig-
gers an electron avalanche [Zap+07]. While conceptually similar to avalanche photo diodes,
they are operated with a voltage above the reverse-bias breakdown voltage. In this so called
Geiger-mode, the response of the diode is no longer linear but exponential which leads to
an extremely high sensitivity and the ability to record individual photons. During capture,
the scene is illuminated by an ultra short light pulse from a laser which is synchronized
with a time counter in the pixel. The counter starts when the laser is triggered and stops
as soon as the first photon is detected and therefore records the time of flight. Since pho-
tons are only detected with a certain probability, repeating the measurement yields full
transient histograms. However, for each measurement each pixel can only detect a single
photon and after that remains blind for the rest of the measurement time. This means that
later-arriving photons are shadowed by early ones and ultimately results in the histogram
not being proportional to the actual intensity values [HGJ17]. With frame rates of several
hundred thousands, transient images with reasonable noise level can be captured within
seconds.

SPADS are commonly available as single-pixel sensors [RGH09], 1D sensors [BBC17], or
2D sensors [Bur+14]; however, their resolution is significantly lower than that of traditional
CCD sensors. First used by Buttafava et al., they quickly became a popular tool for NLoS
imaging.

Single pixel SPADs are nowadays cheap enough to be found in various consumer hard-
ware, where they are usually used as proximity sensor [STM20].

Other hardware

Apart from transient cameras there are also other hardware setups that can measure some
form of time resolved data. The basic principle of AMCW lidars is inspired by radar sys-
tems (RAdio Detection And Ranging) which were developed during the second world war
and remain one of the most common range measurement systems to this day [Ric14]. Sim-
ilarly, in sonar systems (SOund NAvigation Ranging) acoustic waves are used for distance
measurement, especially in under water scenarios where the attenuation is weaker [Uri83].
However, these systems measure the time difference of discrete pulses, rather than the phase
shift between continuous waves.
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2.2.2 Simulation

Synthetic transient images can be created through simulation. This offers several advantages
such as a precise control over the scene, absence of camera noise (if not explicitly modeled),
and cheaper costs since no hardware is required.

Since transient images are a superset of conventional intensity images, they can be
computed with similar algorithms. Such physically-based rendering algorithms are well-
researched and ongoing research is now mostly focused on performance improvements or
special cases.

As a prominent example, path tracing is a versatile rendering algorithm to solve the
rendering equation [Kaj86], and is readily extended to output transient images by keeping
track of the path lengths (see Section 2.3.1). However, the additional temporal dimension
imposes several difficulties. Not only does it increase the output size and thus linearly scales
the amount of samples required, but is also hard to sample directly [PVG19].

Transient rendering was first presented by A. Smith, Skorupski, and Davis [SSD08] and
subsequently improved by various other groups [Jar+14; PVG19; SC14]. Some works also in-
clude the simulation of camera sensor to produce realistic, synthetic measurements [Kel+07;
LHK15; MNK13].

In our own work, we extend pbrt (a physically based ray tracer developed by Pharr,
Jakob, and Humphreys [PJH16]) by a transient component and implement a new importance
sampling strategy, specifically tailored to NLoS imaging setups (see Chapter 5).

Simulation of transient images also enables inverse problem solving. In many cases, the
constrained geometry of the setup can be exploited to derive more efficient renderers. For
example, full path-tracing is not required if there is only a very constrained set of possible
paths. Also full photo realism is often not required to find a suitable solution, which allows
for further speed-up. An example of this can be seen in our own work, see Chapter 4.

2.3 Transient non-line-of-sight imaging

Here we cover the basic principles of transient NLoS imaging. The various extensions that
have been presented over the last years are discussed in the next chapter.

The idea of using a relay surface (most commonly a diffuse wall) to reflect light to and
from the hidden scene was first presented by Kirmani et al. [Kir+09] and is commonly called
3-bounce setup (since the light is reflected by the wall, the hidden object and the wall again).
It is depicted in Figure 2.3a and is used almost ubiquitously for transient NLoS imaging.

Since the wall is commonly assumed to be diffuse, angular information is destroyed
through the reflection. By using time-resolved (transient) measurements, the lack of angular
information is in some sense offset by additional temporal information and a reconstruction
can be attempted.

The 3-bounce setup makes a couple of assumptions, for example there are many more
potential light paths than the one depicted in Figure 2.3a. After introducing notation we
will discuss how the light transport in NLoS scenarios can be modeled and how the hidden
scene can be reconstructed from transient measurements.
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Figure 2.3: a) Light travels from the laser to the wall, is reflected into the hidden scene,
bounces off of the hidden object, and is finally reflected by the wall again towards the camera.
b) Nomenclature of the position and normal vector along the light path.

Notation

Figure 2.3b shows only a single light path from the light source (usually a laser) to the
camera.

We denote the physical location of the laser and the camera with Sl and Sc. We then
call the position of the laser spot on the wall a laser point l, and the projection of a single
camera pixel a camera point c. Since a single light path is in practice not sufficient for
reconstruction [Ped+17], tools like galvanometers are often used to scan multiple points on
the wall with the laser. The camera also observes either multiple positions concurrently (if
it contains a pixel array) or a similar scanning technique is use for single-pixel cameras. We
then have a whole set of laser and wall points, denoted as li ∈ L and cj ∈ C. The wall usually
has a constant normal denoted nw, if not, indices are added accordingly. The hidden object
is at position S. Usually, the object is not a single point but a manifold that is approximated
by a finite number of points. We call these points Sk and their normal vectors nk.

By definition, L and C are part of the visible scene. Given a calibration of the hardware
position relative to the wall, the distances between laser and wall Slli and the distances be-
tween wall and camera cjSc can be calculated and removed from the transient measurements.
These inner distances are then independent from the hardware position which simplifies later
reconstruction. Since no information is lost in the process, by default all measurements are
normalized in this fashion.

2.3.1 Image formation model
Light propagation in general scenes is a well-researched topic and its simulation is the main
focus of computer graphics research. The two most common ways to describe light transport
are the ray model and the wave model. The former is faster to compute but less general and
does not model effects such as diffraction which is only possible using the wave model.

For the ray model, a very general description of light propagation through a scene is
given by the rendering equation [Kaj86].

In the following, we will derive the NLoS image formation model from general light
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Figure 2.4: Various BRDF models plotted for a fixed incident vector ω⃗i and normal vector n⃗.
The gray vector ω⃗r shows the direction of a perfectly specular reflection. Blue: A perfectly
diffuse (Lambertian) model. Orange: The isotropic Ward model [War92] with strong specular
component. Green: The Oren-Nayar model [ON94] which exhibits a slower fall-off for flat
angles, compared to the diffuse BRDF.

transport theory. This gives not only a mathematical formulation to more efficiently handle
NLoS light transport but also makes the various assumptions and approximations clear.
The light transport model consists of a local component (the material model) and a global
component (described by the rendering equation).

Material models

Real-world materials influence the way objects reflect light. In computer graphics this effect
is often modeled by so called bidirectional reflectance distribution functions (BRDF) [PJH16,
p. 348]. A BRDF describes the fraction of light that is reflected from an incoming direction
ωi towards an outgoing direction ωr and is thus a four-dimensional function (with two angles
per direction). Commonly it is denoted as f (ωi, ωr).

A number of variations exist, for example the function can also depend on the location, or
the wavelength, or even model subsurface scattering. These extensions increase the number
of dimensions further and thus the simpler models are more commonly used.

Figure 2.4 shows radial plots of 3 common BRDFs. Note that in the plots ωi and ωr

lie in the same plane and ωi is fixed, which results in the plots being one-dimensional. For
physically based BRDFs the total amount of reflected light should be equal to the total
amount of incoming light, if the material does not absorb light (and convert it into heat) or
emit light itself. Therefore materials with a specular component such as the Ward BRDF in
Figure 2.4 must reflect less light in directions outside the specular highlight compared to a
perfectly diffuse BRDF.

The rendering equation

The rendering equation describes global light transport in a scene. First presented by Ka-
jiya [Kaj86] (and in a similar form by Immel et al. [ICG86]) it computes the radiance (the
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Figure 2.5: Illustration of the rendering equation. The light reflected by point x towards
the camera depends on the light reflected by all other points x′ in the scene and not just the
sun itself.

power per unit projected area per unit solid angle) that a scene point emits or reflects into
a certain direction:

Lo (x, w⃗o) = Le (x, w⃗o) +

∫
A

g (x, x′) · fx (x, w⃗o, w⃗i) · Li (x, w⃗i) ·
cos θo · cos θidA

∥x′ − x∥2
′

(2.1)

Here

• Lo (x, w⃗o) is the outgoing radiance at a point x in direction w⃗o,

• Le is the radiance emitted from the surface,

• Li is the incident radiance from another scene point,

• x and x′ are points on surfaces in the scene,

• g (x, x′) is the geometry term that models potential occlusion between x and x′,

• θ is the angle between the normal vector at point x and w⃗, and

• fx is the BRDF at point x.

Figure 2.5 shows the role of the points x and x′ and the directions w⃗o and w⃗i. In a local
illumination model, Lo would only depend on the surface of x and the light source, (e.g.. the
sun). However, this ignores the influence of other parts of the scene. In the figure, the point
x is in the shade but receives light reflected from other leaves and nearby objects (denoted
as x′). These receive direct radiance from the sun, but also from other parts of the scene.
In general, the radiance of every point in a scene depends on every other point in the scene,
with infinite recursion.

The geometry term g is used to model occlusion in the scene. If x′ is not visible from
x, g is 0, otherwise it is 1. The incoming radiance at x also depends on the distance to x′

(the inverse-square law [PPP93, p. 12]) and the relative orientations of the surfaces (the
Lambert’s cosine law [PPP93, p. 13]).
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2.3. Transient non-line-of-sight imaging

Computing Lo results in an infinite recursion which must be numerically approximated for
all non-trivial scenes. Algorithms like ray tracing and path tracing can be seen as approximate
solvers for the rendering equation [PJH16, p. 12].

While being very general, the rendering equation still has a couple of limitations, some
of which are:

• As a ray model, wave effects such as diffraction are not modeled.

• It assumes free space between two surface points and does not cover volumetric scat-
tering [PJH16, p. 671].

• It only describes light transport and not imaging hardware. Thus simulating the output
of an actual measurement setup requires additional hardware models.

NLoS light propagation

Being a subset of general scenes, the light transport in NLoS imaging scenes is described by
the rendering equation. With the typical assumptions of the 3-bounce setup however, the
transport model becomes rather restricted which allows for a much simpler formulation.

Figure 2.3b show a single light path in the 3-bounce setup. Here, the incident radiance
at a camera position Sc is computed as

L
(
c,
−→
cSc

)
= Le

(
Sl,

−→
Sll

)
·
∑
k

cos
(−→
cSk, nw

)
· fw

(−→
cSk,

−→
cSc

)
(2.2)

· cos
(−→
Skc, nk

)
· cos

(−→
Skl, nk

)
· fSk

(−→
Skl,

−→
Skc

)
· cos

(−→
lSk, nw

)
· fw

(−→
lSl,

−→
lSk

)
· 1∥∥∥−→lSk

∥∥∥2 · 1∥∥∥−→Skc
∥∥∥2 .

Equation 2.2 is derived from Equation 2.1 through a number of assumptions:

• Only one laser point l is illuminated at the same time. The laser is focused on l and
all light emitted at Sl is reflected at l. Therefore l can be thought of as the unique,
point-shaped light source in the scene.

• Since the laser beam is focused, the distance falloff does not apply to Sll.

• The projected area of the camera pixel is the point c. In reality the camera pixel would
integrate over a small area around the projected pixel center c and the pixel read-out
would be the average of this area. Additionally the distance falloff and the projected
pixel area cancel each other out and the wall has the same brightness for every camera
distance.

• The scene consists only of the reflector wall and the hidden object. The physical laser
and camera do not interact with the light propagation but only act as light source and
sink. There are no other walls, no floor, and no ceiling.
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• The object is discretized in a set of discrete points S. (This turns the integral into a
finite sum.)

• Surface points that are not visible from l or c are excluded from S.

• There are no interreflections on the object (i.e. there is no light path SaSb. Either
because the object is convex, or because they are ignored.

• The distance between the object and the wall is sufficiently large such that higher order
reflections (wall → object → wall → object → wall) have a very small contribution
and can be ignored.

These rather strong assumptions break the infinite recursion of Equation 2.1 and leave
only a finite sum over the object’s surface for each combination of l and c. If the object is
point-shaped, there is only a unique path with a unique length which allows for straight-
forward position detection (see Section 2.3.2).

For real measurements, none of the above assumptions are perfectly met. Sometimes
experiments can be designed to satisfy them better (e.g. by covering the floor and back
walls of the scene with black material to avoid background scattering) and some algorithms
rely less on these assumptions (such as machine learning-based approaches, see Section 3.2)
but otherwise these discrepancies will deteriorate reconstruction results.

2.3.2 Reconstruction

Over the years a diversity of NLoS reconstruction methods have been proposed. Here we
discuss some theoretical foundations and review a simple reconstruction approach to build
some intuitive foundations before more algorithms and their differences are discussed in
Chapter 3.

All reconstruction algorithms take the transient images as input but can have different
forms of output. Depending on the parameterization of the output, different types and
amounts of detail are reconstructed. Figure 2.6 shows an example of a scene containing a
car that is represented in three different ways: A voxel volume, a height map, and a rigid
transformation (position and orientation) of an object with known shape. While the first
two are different instances of full geometry reconstruction, the later would occur in object
tracking methods.

Different parameterizations have different amounts of degrees of freedom (DoF) and as
a rule of thumb the more DoFs are to be determined, the harder the reconstruction problem
becomes. In practice the choice often depends on the application. In traffic scenarios it
might be more important to know just the position and velocity of a hidden vehicle than
its shape, while other applications such as remote observation might require full geometry
reconstruction for object identification. The parameterization might also contain other scene
properties such as materials.

Some exotic parameterizations are used as well, for example Tsai et al. parameterize the
surface of a known object to add finer surface detail [TSG19].
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2.3. Transient non-line-of-sight imaging

(a) Voxel (b) Height map (c) Rigid transformation

Figure 2.6: Different levels of reconstruction with varying amounts of degrees of freedom
(DoF). a) Voxel grid, > 10.000 DoF. b) Height map, > 1000 DoF. c) Object position, 3 DoF.
(Figure previously published in [KLH16])
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(a) Ellipsoidal back projection (b) Transient image

Figure 2.7: Back projection principle. a) All possible reflection points for a path with
constant length between l and c lie on an ellipsoid. This reflection point is the intersection
of all ellipsoids. b) Transient image of a NLoS scene, showing light arriving at different parts
of the wall at different times from a single reflection point. Finite resolution smears out the
parabola-shaped line.
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Back projection

The baseline algorithm for NLoS reconstruction is ellipsoidal back projection. Originally
presented by Velten et al. [Vel+13] it has been used and improved in many publications
throughout the last years (see Chapter 3). Due to its simplicity it is well suited to give an
intuitive understanding of how the temporal information from transient images can be used
for NLoS reconstruction.

The basic principle is shown in Figure 2.7a. Given transient measurements from a setup
such as shown in Figure 2.3a, the light of each normalized measurement Ci and Lj originated
from somewhere on an ellipsoid with the focal points Ci and Lj (since by definition an
ellipsoid is the set of all points that result in the same travel time). For an ideal point-shaped
object and perfectly precise measurements, the ellipsoids for any combination of C and L

intersect at the same point, which then is the position of the object. In practice, temporal
and spatial resolution is limited and for each camera point light arrives at slightly different
times as shown in the transient image in Figure 2.7b. Each non-zero pixel corresponds
than to an ellipsoid and the hidden scene is discretized into a voxel grid in which each
ellipsoid is back-projected, adding up their contributions. Multiple laser positions can be
used by back-projecting all corresponding transient images into the same voxel grid. The
voxel grid is interpreted as a probability map with the object located at its maximum.
By thresholding the probability map it is also possible to retrieve the approximate object
geometry. Since effects like interreflections or occlusion are not handled by the model, the
geometry reconstruction quality is limited.

2.3.3 Challenges
So far, NLoS imaging is still an emerging technology with no available end-user prod-
ucts. It has almost exclusively been demonstrated in lab environments (with some ex-
ceptions [Sch+20; LWO19]) and the development is slowed by some intrinsic challenges:

• Diffuse reflections destroy angular information. However, this ’limitation’ is what
sparked the whole field of research in the first place and the goal is therefore to cir-
cumvent it (by finding algorithms that do not require angular information) rather than
lifting it (by simply using mirrors instead of diffuse walls).

• Due to multiple diffuse reflections, light levels are very low. Equation 2.2 shows that if
the hidden object is at a distance d from the wall, the light intensity is proportional to
d−4; a significant reduction. Using eye-safe infrared light the illumination power can
be increased to some extent, but in practice the scene size is still limited. While low
light levels do not directly destroy the signal, they increase the noise substantially and
also make it hard to even differentiate the NLoS signal from background light.

• Although transient imaging hardware is becoming more widespread (and even smart
phones come equipped with single SPAD pixels [STM20]), transient imaging hardware
is still more expensive and less accessible than traditional cameras, especially when
high temporal or spatial resolution is required.
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2.3. Transient non-line-of-sight imaging

• In order to perform the reconstruction, the visible part of the setup must be known.
This adds a certain calibration overhead that is not present in traditional imaging.
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CHAPTER 3

Related work

NLoS imaging research developed from a simple idea into a diverse field of research. Efforts
have been made to improve on the various dimensions of the problem such as reconstruction
quality, capture and reconstruction speed, setup constraints, and more. Current methods
weight a compromise among these aspects by improving one dimension and sacrificing per-
formance in another, or they allow to solve a special case particularly well.

Nowadays the field of NLoS imaging consists of a large number of individual publications
with a varying degree of impact. This chapter aims to briefly discuss what we feel are
the most impactful. To address the various dimensions, efforts were made to group similar
publications and explore the historical development in each. The selection is furthermore
strongly focused on NLoS methods using transient images (see Figure 2.1). While some
publications outside this focus are briefly mentioned, a more thorough overview can be
found in Maeda et al. [Mae+19].

NLoS system dimensions

Figure 3.1 shows an overview of the various dimensions (grouped into performance charac-
teristics and implementation aspects) that describe NLoS systems. While the performance
characteristics are of interest for practical applications, the implementation aspects are useful
to describe the academical development.

Reconstructed information Different applications require different types of information
from a scene. As described in Section 2.3.2, some are easier to reconstruct than others.

Supported materials The image formation model inside the reconstruction algorithm of-
ten dictates what material types can be reconstructed. The most common case are
diffuse objects.

Scene complexity The supported scene complexity imposes strong constraints on possible
use cases. A common assumption for tracking is that the scene consists of a single,
point-shaped object. Planar scenes yield simpler reconstruction problems, while partial
occlusion (where some scene points are only visible for specific ci and lj combinations)
is especially hard.

Practicability Most setups have only been demonstrated in small (room sized) indoor
environments. Uncontrolled environments (especially outdoor) yield a lot of noise
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Figure 3.1: Different dimensions to categorize NLoS imaging Systems.

from ambient light. Setups also often have to be calibrated towards specific scenes,
making them less portable.

Speed High measurement speed allows capturing dynamic scenes while high reconstruction
speed allows real-time observation.

Price If off-the-shelf components are used, setups are more suitable for consumer products.
Hardware Various hardware platforms for measuring transient images are available (see

Section 2.2.1). They can greatly differ in spatial and temporal resolution and impact
speed and price of the setup.

Scanning The general model in Section 2.3 describes measurements as sets of camera and
laser points. These can be measured in different ways, where scan line or full field
measurements are more time efficient than single point scanning (often using gal-
vanometers). However, the later is a requirement for confocal measurements.

Reconstruction method The reconstruction algorithm presents the underlying idea of an
setup and is usually the main contribution of a new publication.

3.1 Historical foundation
The idea of NLoS imaging using transient imaging was first introduced by Kirmani et al.
in 2009 [Kir+09]. They estimate pair-wise distances of individual patches that scatter light
onto each other from transient measurements. In an extension, some of these patches can
be hidden from both light source and detector, which renders it the first NLoS problem.

Pandharkar et al. first introduced the 3-bounce setup as shown in Figure 2.3a where
there is a clear distinction between the visible side in which the sensing setup is located and,
separated by an occluding wall, a hidden side in which the object of interest resides [Pan+11].
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They demonstrate tracking of a moving object in a cluttered environment (which is filtered
out by taking difference images) and an estimation of the object size from the focus width
of the signal.

Naik et al. used a NLoS setup with known geometry to estimate the material of a hidden
object by fitting a three-dimensional BRDF model to streak camera measurements [Nai+11].
The algorithm can handle multiple patches with different materials as well.

In 2012, Velten et al. published the first method to reconstruct the full geometry of a
hidden object [Vel+12]. Using the 3-bounce setup the measurements of a streak camera
are back-projected into a voxel volume. By applying spatial filtering, the geometry is re-
vealed. Even though the setup is slow and expensive, the amount of reconstructed details
was remarkable and likely sparked much of the later research.

These early approaches established the idea of NLoS imaging as an active research area
and also already cover the most common types of information to be reconstructed: Object
shape, position, and material. With the exception of Kirmani et al. (who uses an oscillo-
scope), all these approaches use streak cameras which offer high temporal resolution but are
in general expensive and slow.

Capture hardware variety

A variety of hardware platforms for transient images exists (see Section 2.2.1) on which NLoS
imaging was subsequently ported and evaluated.

Laurenzis et al. demonstrate that a range-gated imaging system can be used in place
of a streak camera [LV14]. The physical setup and reconstruction algorithm largely follows
Velten et al., while introducing a new filtering method for the post-processing step.

Heide et al. use a setup based on AMCW Lidar [Hei+14]. Since it can not measure full
transient histograms, the reconstruction is performed by solving a linear equation system.
The hidden scene is modeled as a height field and multiple measurements with different
modulation frequencies are taken. Exploiting the linearity of light propagation and some
sparsity priors, the hidden scene can be reconstructed.

Buttafava et al. were the first to utilize a single pixel SPAD camera [But+15]. It is focused
on the middle of the reflector wall while the laser scans an array of positions around it. Back
projection is used as the reconstruction algorithm and an evaluation of the influence of the
hidden object’s albedo is performed, which confirms the intuitive assumption that lighter
objects reflect more signal and are beneficial for the reconstruction.

The first method for NLoS reconstruction that does not rely on temporal resolution was
presented by Katz et al. (see Section 3.4), however, it uses a different scene setup [Kat+14].
On the 3-bounce setup, a method presented in our own work (see Chapter 4) was the first
to rely solely on intensity data. It runs in real time and on cheap hardware (as it does
not use transient imaging) but performs only position and orientation tracking rather than
full three-dimensional reconstruction [Kle+16]. It also introduced inverse rendering as novel
reconstruction method.

Confocal setups

Although in previous work a variety of patterns for laser points and camera points are used,
they share the characteristic of illuminating and measuring different points. O’Toole et al.
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were the first to introduce the so called confocal setup, in which for each measurement the
laser and camera points are always the same [OLW18]. The camera and laser view directions
are combined using a beam splitter and with a galvanometer various positions at the reflector
wall are scanned. This justifies also the term coaxial setup which focuses on the fact that both
paths are aligned, however confocal remains the more popular description in later literature.

Having a laser and camera point coincide simplifies the image formation model, as the
ellipses in Figure 2.7a become circles which turns the forward operator into a convolution.
This allows to use a deconvolution-based reconstruction which is both much faster and more
robust compared to traditional back projection as it offers a closed-form solution. It imposes
however some new constraints such as requiring planar reflector wall and the inability to
account non-retroreflective components of the light.

Heide et al. extends the image formation model of the confocal setup by adding occlusion
(modeled by a visibility term) and surface normals [Hei+19]. The reconstruction is then done
by solving a multi-convex optimization problem which is computationally more expensive
than other approaches but allows to reconstruct more complex scenes.

Confocal setups are difficult to measure, since they contain a strong primary reflection
(where the laser spot on the wall is in the field of view of the camera pixel). This leads to
overexposure and the main signal (which is orders of magnitude weaker) is easily lost. A
common approach is to defocus both points slightly to avoid capturing the primary reflection.
This violates model assumptions, but in practice the impact of it is neglectible.

3.2 Reconstruction methods

Back projection

Back projection algorithms have been widely investigated in the context of computer to-
mography [KS88, Chap. 8] and were first introduced to NLoS imaging by Pandharkar et
al. [Pan+11]. Even though better algorithms for geometry reconstruction are available to-
day, it remains an easy to implement and robust algorithm for object tracking under the
assumption that the scene mostly consists of a single, point-shaped object (see Section 2.3.2).
As such, it is used in a number of publications that focus on extending the basic idea of
NLoS imaging in various ways: Laurenzis et al. introduced the first setup using time-gated
hardware [LV14], Gariepy et al. demonstrate person tracking from reflections off the floor
rather than the wall [Gar+16], and Chan et al. demonstrates long distance tracking using a
telescopic lens [Cha+17b].

Back projection for full geometry reconstruction was first demonstrated by Velten et
al. [VRB11]. O. Gupta et al. experimented with a CoSaMP-based reconstruction [NT09]
although notable improvements are only reported on synthetic data [Gup+12]. Buttafava
et al. demonstrate that SPAD measurements are suitable input for back projection, and
Arellano et al. developed an efficient, GPU-based back projection implementation [AGJ17].

La Manna et al. embed back projection into an iterative scheme [La +18]. In each
iteration, a forward rendering operator is used to compare the current back projection result
to the measurements and the difference is propagated into the reconstruction using either an
additive or multiplicative mode. Upon convergence, the result is consistent with the forward
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operator. For linear light transport operators (which is only true under strong assumptions,
e.g. no occlusion), this method is an instance of algebraic reconstruction techniques [GBH70]
and statements about convergence exist. The authors report improved results on synthetic
data, on measured data the results are however less convincing, which the authors note might
be due to shortcomings in the forward model.

Ahn et al. derive formal justification for the filtered back projection approach by showing
that under certain assumptions on the imaging geometry, the Gram of the NLoS measure-
ment operator is a convolution operator [Ahn+19]. With their mathematical framework, the
authors then derive an optimized deconvolution kernel that offers improved reconstruction
quality.

Conceptually similar to back projection is the space carving algorithm described by Tsai
et al. [Tsa+17]. Here, only the first returning photons are used to identify areas in the
reconstruction volume that are guaranteed to be free of geometry in contrast to marking
potentially occupied areas. This approach is potentially more robust, since it is indepen-
dent from any amplitudes, however, recovering details of regions with negative curvature or
partially occluded parts of the scene is not possible.

Inverse rendering

In inverse rendering, a traditional (forward) rendering algorithm is used inside a numerical
optimization loop to solve the inverse problem: retrieving scene parameters from rendered
images (see Figure 4.1). While solving a single inverse problem is computationally expensive
as it requires many evaluations of the forward model, it is still a widely used method since
it can solve problems for which there is no analytical solution to the inverse. In NLoS
imaging, an initial guess of the scene parameters can be refined by evaluating the forward
model (which is usually derived from classic computer graphic research) and comparing it
to the real scenes measurement. The difference between the two is measured by an objective
function which then is minimized by algorithms like gradient descent. As appropriate forward
models already exist or can be derived from existing ones, inverse rendering is a versatile
tool and readily adopted to many reconstruction goals.

Naik et al. were the first to employ inverse rendering to NLoS imaging by fitting low-
dimensional BRDF models to hidden surfaces [Nai+11].

In our own work (see Chapter 4), we develop a specialized, patch-based forward renderer
fast enough to perform real-time tracking of hidden objects [Kle+16]. The algorithm can
also reconstruct the orientation and even be used to classify objects of various shapes, but
some ground-truth knowledge of the hidden objects is required.

Iseringhausen et al. demonstrate high-dimensional geometry reconstruction using inverse
rendering [IH20]. They use a similar but extended renderer that takes occlusion into account
in combination with a geometry model based on isosurfaces of three-dimensional Gaussian
kernels. While a single reconstruction can take over a day, the method is shown to be
significantly more robust to noise than many others.

Tsai et al. reconstruct even more surface detail, but require an initialization that is
already close to the real geometry, due to the high non-convexity of the problem [TSG19].
They suggest to retrieve this initialization using a different method (and demonstrate it using
the space carving algorithm of Tsai et al. [Tsa+17]) and proceed to optimize the position of
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individual triangle vertices on the mesh. Although slow as well, this method generates by
far the highest amount of surface details demonstrated so far.

In our own work (see Chapter 6) we tackle the problem of calibrating the visible part of
the setup (which is a prerequisite for many methods) by presenting a calibration scheme based
on specular reflections from multiple mirrors in the scene [Kle+20]. The specular reflections
drastically simplify the image formation model, which enables automatic differentiation and
an calibration result ready in a matter of minutes even with unoptimized code.

Machine learning

Some publications explore the feasibility of machine learning-based reconstructions, mostly
in the form of neural networks. Given enough examples, a network of suitable architecture
can be trained to automatically find a mapping between NLoS measurements and various
kinds of output parameters, from low-dimensional position tracking to high-dimensional
geometry reconstruction. There is no need to explicitly model light transport or camera
noise characteristics or to calibrate the visible part of the setup, as all of these can be learned
by the network. However, an explicit forward model is still necessary for the generation of
synthetic training data since insufficient training data leads to over fitting and a lack of
generalization to new environments.

Caramazza et al. were the first to use a neural network to distinguish different persons
and their position (out of a small set of discrete possibilities) in a hidden volume [Car+18].
Although the output is low-dimensional and the network is only trained on a single setup
geometry, this proved that machine learning is suitable for NLoS imaging problems.

Chen et al. reconstruct a two-dimensional view of the hidden scene from non-transient
measurements with a neural network [Che+19]. Using only intensity data is a good example
for the power of machine learning, since reconstructing this high amount of information
without the temporal dimension has not been demonstrated before.

The work of Chopite et al. goes into a similar direction, although they use transient
signals and reconstruct a depth map of the scene, rather than an albedo map [Cho+20].

So far, machine learning-based approaches have not been demonstrated to work on ar-
bitrary new setups. Explicit reconstruction methods on the contrary can be quite easily
calibrated to new setups and their reconstruction quality is in some sense depending on the
calibration quality. However, in machine learning-based approaches, small derivations from
the original setup can have unforeseeable effects which necessitates very thorough evaluation
of such systems.

Wave-based

While back projection can be thought of as utilizing ray optics, similar algorithms can be
formulated using wave-equations. This is a well-established approach in the field of seismol-
ogy where acoustic waves are used to measure the reflectivity of the earth surface [Sto78].
The underlying mathematical formulation is similar to that of NLoS imaging.

Reza et al. were the first to adopt this approach [Rez+19]. Each point on the reflector
plane is modeled as a complex phasor, computed by a Huygens’s-like integral over the incom-
ing light. These phasors are virtual, meaning that their frequency is of the same magnitude
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as the hidden scene (cm or m) and not on the scale of the actual wavelength of the light (nm
or µm).

Liu et al. present a geometry reconstruction algorithm based on this theoretical frame-
work [Liu+19]. Compared to classical back projection, it reveals significantly more details
and is more robust to noise while having the same computational complexity.

Lindell et al. adapt a wave-based reconstruction method known as f -k migration from the
field of seismology [LWO19]. If offers a closed-form solution and is much more efficient than
filtered back projection. In the original formulation it requires a confocal scanning setup,
however the authors also present an extension that converts non-confocal measurements
to confocal measurements based on normal moveout correction [Yil01], which originates
also in the seismology community. Although the pre-processing is approximate, results are
convincing in practice.

Overall, wave-based NLoS models are amongst the most promising reconstruction meth-
ods presented so far and offer both, high quality and reconstruction speed.

Other

Other reconstruction methods that do not quite fit in any of the above categories have been
proposed as well.

Heide et al. models the hidden scene as a diffuse height field without occlusion [Hei+14].
With these assumptions, the light transport can be modeled as a linear equation system that
can be solved using the Alternate Direction Method of Multipliers (ADMM) and sparsity
priors.

Kadambi et al. draws inspiration from established antenna signal processing methods
[Kad+16]. The reflector wall is viewed as a virtual antenna array (where each observed
point is an antenna location that performs an omnidirectional measurement of the incoming
light) and radio source localization algorithms are used for the reconstruction. Based on
these, an analysis of recoverability is performed as well.

Pediredla et al. models the hidden room as a set of planes [Ped+17]. Since there is no
analytical solution for the signal reflected by a plane, a dictionary of possible plane candi-
dates is precomputed using Monte Carlo sampling. With this, the reconstruction becomes
a combinatorical problem of selecting the best fitting planes that make up the room. The
approach might be extended to a know set of hidden objects (such as for classification task),
but the discrete nature of the dictionary makes it unsuitable for general, continuous scenes.

As an extension of the space carving algorithm of Tsai et al.[TSG19] (see discussion of
back projection), Xin et al. [Xin+19] present a reconstruction technique called Fermat flow
that is based on the Fermat principle [Sta72]. Their key observation is that points in the
hidden scene that are either on the boundary of an object or result in a specular reflection
for a certain camera and laser point result in discontinuities in the transient image and can
be reconstructed using purely geometric reasoning. The first returning photons of the work
of Tsai et al. are a subset of these so-called Fermat points. Since Fermat flow does not make
use of intensity information, it can reconstruct objects with arbitrary BRDFs.

Scheiner et al. [Sch+20] use a Doppler radar with a frequency of 76GHz - 81GHz (corre-
sponding to a wavelength of about 5mm). Since diffuse reflection occurs from surface details
in the range of the wavelength, this turns many everyday objects such as buildings, cars, and
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guard rails into specular reflectors. By measuring the geometry of the reflector separately,
the specular reflections can be explicitly computed and the sensing of the hidden object
is effectively transformed into a line-of-sight imaging problem. Due to the Doppler radar,
only moving objects can be captured. In their work they also perform a machine learning
based refinement step one the object reconstructed by standard radar imaging techniques to
perform a classification and predict trajectories.

3.3 Miscellaneous extensions
Although the main focus of most publications lies on the development of improved recon-
struction methods, some work has also been done to transfer NLoS imaging from lab setups
to more realistic scenarios.

As the wall of the hidden room might be cluttered or otherwise unsuitable for reflection,
Gariepy et al. propose to reflect the signal off the floor instead [Gar+16]. La Manna et al.
propose to use a second SPAD array to measure the movement of a curtain that acts as
reflector in real time [La +20]. This approach allows to use almost arbitrary objects with
complex and dynamic shape as reflectors.

Since NLoS is of potential interest for remote sensing applications, Chan et al. demon-
strate a large distance sensing setup, where a hidden scene is observed from a stand-off
distance of over 50 m using a telescope [Cha+17b].

Similarly, Metzler et al. focus a laser and a SPAD imager through a keyhole over a
potentially long range which imposes the challenge of having just a single confocal observation
point on the reflector wall available [MLW19]. For moving objects, the shape and trajectory
can be jointly retrieved using an expectation maximization algorithm.

The hidden scene model commonly consist of some objects of interest plus a background
signal from the room geometry. The later is usually regarded as a source of noise and
filtered out or ignored. Pediredla et al. explicitly models this background signal as a set of
mathematical planes and attempts to reconstruct them [Ped+17].

Usually, a single wavelength is used for the measurements, leading to monochrome re-
constructions. By using multiple wavelengths, color information can be reconstructed as
demonstrated by Musarra et al., and Chen et al. [Mus+19; Che+19].

Lindell et al. [LWK19] use acoustic waves for NLoS reconstructions. Since the wave
equation is the same for electromagnetic and acoustic waves, the confocal light cone trans-
formation [OLW18] can be used for reconstruction after some domain specific adaptations.

3.4 Related problems
As outlined in the taxonomy in Figure 2.1, there are some problems closely related to tran-
sient NLoS imaging.

Partial occlusion

Instead of relying on the classic 3-bounce setup (shown in Figure 2.3a), some work attempts
NLoS reconstruction from partial occlusion. These setups typically use accidental illumina-
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Figure 3.2: Different setups for occlusion based NLoS imaging. (a) A shadow of the hidden
object is projected onto the visible wall. (b) Light reflected by the hidden object illuminates
the visible floor. The intensity varies with the degree of occlusion by the wall. (c) Light from
the hidden object reaches the wall unhindered, except when it comes from a single direction.
In a traditional pinhole, only light from a certain direction would reach the wall.

tion rather than active illumination, meaning that a light source already present in the scene
can be utilized rather than requiring a precisely controlled light source that is part of the
measurement system.

Figure 3.2 shows an overview of occlusion-based setups. Baradad et al. observe an object
and its shadow to reconstruct a four-dimensional light field of the hidden scene [Bar+18].
Later, Yedidia et al. extend this approach and do not rely on the knowledge of the shape
anymore [Yed+19] (Figure 3.2a).

Bouman et al. analyze light reflected from an object onto the floor close to a corner
(Figure 3.2b) [Bou+17]. The floor then encodes for each angle a one-dimensional projection
of the object. Contributions from other parts of the scene can be filtered out if the hidden
objects are moving and the static part of the illumination is gathered and subtracted from
reconstruction measurements. This approach was extended by Seidel et al. who use a floor
with non-homogeneous patterns (like tiles or stripes) which allows to also reconstruct static
objects [Sei+19].

Saunders et al. use a small occluder within the hidden scene that projects partial shadows
onto the reflector wall (Figure 3.2c) [SMG19]. The occluder realizes the function of an inverse
pinhole, where instead of filtering light from a single direction all light except from a single
direction passes. Similarly to pinhole cameras, smaller occluders lead to a higher resolution
but a reduced contrast on the wall.

Since these setups are conceptually different from the classic 3-bounce setup, it is hard
to compare transient imaging based approaches to occlusion based ones. However Thram-
poulidis et al. use 3-bounce setup that also includes occluders and perform a study of how
much can be reconstructed from either occlusion or temporal information [Thr+18].

Speckle pattern

When coherent light is reflected from a diffuse object, high-frequent speckle patterns are
formed. The rough surface causes phase shifts in the scale of the wavelength which mod-
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ulate the intensity by constructive and destructive interference. The speckle pattern is
quasi-random, since the multitude of small surface variations cannot be modeled in prac-
tice. However, these patterns still encode information about the incoming light before the
reflection, which can be decoded in various ways to perform NLoS reconstruction:

Feng et al. and Freund et al. first described and verified the so called memory effect,
which describes that information about large-scale spatial variation is preserved while finer
variations are lost when a wave travels through a scattering medium [Fen+88; FR88]. Katz et
al. build on this principle to reconstruct a two-dimensional image around a corner [Kat+14].

Even if the hidden scene is illuminated by incoherent light, speckle-based approaches can
be used by utilizing a spatial light modulator for wavefront shaping [KSS12].

Due to their high frequencies, speckle patterns are very sensitive to small motions which
can be used for precise tracking of small objects, such as finger gestures [Smi+17]. If these
patterns are reflected onto a wall in a NLoS setup, the same technique can be used for
tracking around a corner [SOG18].

Speckle patterns are also used in lens-less imaging. Since no electronic circuit is fast
enough to measure the phase of incoming visible light directly (only the intensity of the
wave can be captured), a large part of the information is lost. Phase retrieval algorithms
can be used to first reconstruct the phase and subsequently the full image [She+15; JEH15].
In a NLoS setup, the reflector wall then acts as a lens-less imager whose signal is recorded
by the actual camera.

Lately, machine learning-based techniques have been applied to speckle patterns. Finding
a matching decoder function to the quasi-random encoded speckle image is well suited for
data-driven algorithms and can be used to classify digits or human poses [Lei+19]. Metzler
et al. derive a noise model from spectral estimation theory and use it in combination with
a neural network for robust phase retrieval from noisy data [Met+20]. This allows robust
retrieval of two-dimensional images from hidden scenes.

Speckle imaging can also be combined with transient reconstruction techniques. Boger-
Lombard and Katz reconstruct travel times from speckle patterns and proceed with a NLoS
reconstruction using standard back projection [BK19].

Looking through occluders

Looking through objects is not only a problem closely related in application to looking
around objects, but also shares some of the technologies and algorithmic methods with it.
As outlined in Figure 2.1, the various methods can be categorized by the type of occluder
they can look through.

For turbid media such as fog, muddy water, or rain and snow, small particles reduce the
transparency in the medium by scattering or absorption, which imposes a severe problem
for applications such as driving in bad weather or underwater imaging. Usually the particles
are regarded as random, and unknown and are modeled by distribution functions. (A rare
counter example is found in Iseringhausen et al., where rain drops on a transparent surface
are individually estimated and their geometry is used to reconstruct a light field of the scene
behind it by ray tracing.)

Since some photons still arrive at the camera without any (or very little) particle inter-
action, reconstructing the scene becomes a problem of filtering out the direct signal from
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the noise [Wan+91; Bus05; Lau+12]. For temporally resolved measurements (such as in
range-gated imaging), the direct signal will always have a shorter travel time than light with
the same origin that was reflected by particles. However, light reflected by particles in front
of the object might have the same path length as light coming straight from the object; thus
the amount of noise that can be filtered out by a time gate has an upper limit.

Bijelic et al. solve the problem of imaging through bad weather by multisensor fu-
sion [Bij+20]. Measurements from a stereo camera, a gated camera, a radar, a lidar, and a
FIR camera are fed into a neural network which is trained to use the most reliable data in
each situation to extract scene features.

For higher particle density, the medium turns into a diffusor and essentially no photon
can travel through it without particle interaction. This problem is closely related to imaging
around occluders using diffuse reflectors and various proposed solutions are demonstrated
on both [KSS12; Kat+14; Kad+16; Xin+19]. Imaging through diffusors mostly relies on
transient imaging [Sat+17; LW20] or speckle imaging [Ber+12].

Han et al. evaluate how the frequency of the electromagnetic waves influence the con-
trast that is achieved in sensing through diffusors by comparing near-infrared and terahertz
waves [HCZ00]. As an extension of this idea it is possible to detect objects even through
completely opaque (in the visible range) objects by using a wavelength that interacts less
with the occluder. WiFi radiation (2.4GHz - 5GHz) passes through many types of walls and
other obstacles relatively unhindered. However, since many room-sized objects are smooth
with respect to the wavelength (where 5GHz corresponds to a wavelength of about 6 cm),
reflections are predominantly specular and receiving the reflected signal becomes a challenge
(an effect popularly known from stealth bomber cloaking in the radar domain [McC08]).
Karanam et al. use two drones to measure the signal of a scene hidden in a ring of cinder
blocks [KM17]. By flying around the scene, the specular reflections can be captured. Adib
et al. track humans through walls from a single location [AK13; Adi+15]. At different times
during the movement, specular reflections from different body parts show up and can be
merged in a post-processing step.
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CHAPTER 4

Tracking objects outside the line of sight
using 2D intensity images

This chapter was published as a peer-reviewed paper in the Scientific Reports journal by the
nature publishing group in 2016 [Kle+16].
The authors are Jonathan Klein, Christoph Peters, Jaime Martín, Martin Laurenzis, and
Matthias B. Hullin.

The observation of objects located in inaccessible regions is a recurring challenge in a
wide variety of important applications. Recent work has shown that using rare and expensive
optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-
dimensional (2D) patterns around a corner. Here we show that occluded objects can be
tracked in real time using much simpler means, namely a standard 2D camera and a laser
pointer. Our method fundamentally differs from previous solutions by approaching the
problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through
the scene, we determine the set of object parameters that most closely fits the measured
intensity distribution. We experimentally demonstrate that this approach is capable of
following the translation of unknown objects, and translation and orientation of a known
object, in real time.

4.1 Introduction
The widespread availability of digital image sensors, along with advanced computational
methods, has spawned new imaging techniques that enable seemingly impossible tasks. A
particularly fascinating result is the use of ultrafast time-of-flight measurements [Abr78;
VRB11] to image objects outside the direct line of sight [Vel+12; Hei+14; LV14; Gar+16].
Being able to use arbitrary walls as though they were mirrors can provide a critical advantage
in many sensing scenarios with limited visibility, like endoscopic imaging, automotive safety,
industrial inspection and search-and-rescue operations.

Out of the proposed techniques for imaging occluded objects, some require the object
to be directly visible to a structured [Sen+05] or narrow-band [SEL11; KSS12; Kat+14]
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light source. Others resort to alternative regions in the electromagnetic spectrum where the
occluder is transparent [Sum+11; AK13; Adi+15]. We adopt the significantly more chal-
lenging assumption that the object is in the direct line of sight of neither light source nor
camera (Figure 4.1), and that it can only be illuminated or observed indirectly via a diffuse
wall [Vel+12; Hei+14; LV14; But+15; Gar+16]. All the observed light has undergone at
least three diffuse reflections (wall, object, wall), and reconstructing the unknown object is
an ill-posed inverse problem. Most solution approaches reported so far use a back projection
scheme as in computed tomography [PSV09], where each intensity measurement taken by
the imager votes for a manifold of possible scattering locations. This explicit reconstruc-
tion scheme is computationally efficient, in principle real-time capable [Gar+16], and can
be extended with problem-specific filters [Vel+12; Kad+16]. However, it assumes the avail-
ability of ultrafast time-resolved optical impulse responses, whose capture still constitutes
a significant technical challenge. Techniques proposed in literature include direct tempo-
ral sampling based on holography [Abr78; Abr83; QM85], streak imagers [VRB11], gated
image intensifiers [LV14], serial time-encoded amplified microscopy [GTJ09], single-photon
avalanche diodes [Gar+15], and indirect computational approaches using multi-frequency
lock-in measurements [Hei+13; Kad+13; Pet+15]. In contrast, implicit methods state the
reconstruction task in terms of a problem-specific cost function that measures the agreement
of a scene hypothesis with the observed data and additional model priors. The solution
to the problem is defined as the function argument that minimizes the cost. In the only
such method reported so far [Hei+14], the authors regularize a least-squares data term with
a computationally expensive sparsity prior, which enables the reconstruction of unknown
objects around a corner without the need for ultrafast light sources and detectors.

Here we introduce an implicit technique for detecting and tracking objects outside the line
of sight in real time. Imaged using routinely available hardware (2D camera, laser pointer),
the distribution of indirect light falling back onto the wall serves as our main source of
information. This light has undergone multiple reflections; therefore, the observed intensity
distribution is low in spatial detail. Our method combines a simulator for three-bounce
indirect light transport with a reduced formulation of the reconstruction task [Gar+16;
Kad+16]. Rather than aiming to reconstruct the geometry of an unknown object, we assume
that the target object is rigid, and that its shape and material are either known and/or
irrelevant. Translation and rotation, the only remaining degrees of freedom, can now be
found by minimizing a least-squares energy functional, forcing the scene hypothesis into
agreement with the captured intensity image.

Our main contributions are threefold. We propose to use light transport simulation to
tackle an indirect vision task in an analysis-by-synthesis sense. Using synthetic measure-
ments, we quantify the effect of object movement on the observed intensity distribution, and
predict under which conditions the effect is significant enough to be detected. Finally, we
demonstrate and evaluate a hardware implementation of a tracking system. Our insights are
not limited to intensity-only imaging, and we believe that they will bring non-line-of-sight
sensing closer to practical applications.
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Figure 4.1: Tracking objects around a corner. a, Our experimental setup follows the most
common arrangement reported in prior work, except that it does not use time-of-flight tech-
nology. A camera observes a portion of a white wall. To the right of the camera’s field of
view, a collimated laser illuminates a spot that reflects light toward the unknown object.
The light distribution observed by the camera is the result of three diffuse light bounces
(wall–object–wall) plus ambient contributions. b, Geometry of three-bounce reflection for a
single surface element. c, Flow diagram of our tracking algorithm. Given shape, position
and orientation of an object (the “scene hypothesis”), we simulate light transport to predict
the distribution that this object would produce on the wall. By comparing this distribution
to the one actually observed by the camera, and refining the parameters to minimize the
difference, the object’s motion is estimated.
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4.2 Results

Light transport simulation (synthesis). At the center of this work is an efficient ren-
derer for three-bounce light transport. Being able to simulate indirect illumination at an
extremely fast rate is crucial to the overall system performance, since each object track-
ing step requires multiple simulation runs. Like all prior work, we assume that the wall is
planar and known, and so is the position of the laser spot. The object is represented as a
collection of Lambertian surface elements (Surfels), each characterized by its position, nor-
mal direction and area. As the object is moved or rotated, all its surfels undergo the same
rigid transformation. We represent this transformation by the scene parameter p, which is
a three-dimensional vector for pure translation, or a six-dimensional vector for translation
and rotation. The irradiance received by a given camera pixel is computed by summing
the light that reflects off the surfels. The individual contributions, in turn, are obtained
independently of each other as detailed in the Methods section, by calculating the radiative
transfer from the laser spot via a surfel to the location on the wall observed by a pixel. Note
that by following this procedure, like all prior work, we neglect self-occlusion, occlusion of
ambient light, and interreflections. To efficiently obtain a full-frame image, represented by
the vector of pixel values S (p), we parallelized the simulation to compute each pixel in a
separate thread on the graphics card. The rendering time is approximately linear in the
number of pixels and the number of surfels. On an NVIDIA GeForce GTX 780 graphics
card, the response from a moderately complex object (500 surfels) at a resolution of 160×128
pixels is rendered in 3.57 milliseconds.

To estimate the magnitude of changes in the intensity distribution that are caused by
motion or a change in shape, we performed a numerical experiment using this simulation.
In this experiment, we used a fronto-parallel view on a 2 m×2 m wall, with a small planar
object (a 10 cm×10 cm white square) located at 50 cm from the wall. Object and laser spot
were centered on the wall, but not rendered into the image. Figure 4.2 shows the simulated
response thus obtained. By varying position and location of the object, we obtained difference
images that can be interpreted as partial derivatives with respect to the components of the
scene parameter p. Since the overall light throughput drops with the fourth power of the
object-wall distance, translation in Y direction caused the strongest change. Translation in
all directions and rotation about the X and Z axes affected the signal more strongly than
the other variations. With differences amounting to several percent of the overall intensity,
these changes were significant enough to be detected using a standard digital camera with
8- to 12-bit A/D converter.

Experimental setup. Our experiment draws inspiration from prior work [Vel+12; Hei+14;
But+15; Gar+16; Kad+16]; the setup is sketched in Figure 4.1a. Here, due to practical con-
straints, some of the idealizing assumptions made during the synthetic experiment had to be
relaxed. In particular, only an off-peak portion of the intensity pattern could be observed.
To shield the camera from the laser spot and to avoid saturation and lens flare, we had
to position the laser spot outside the field of view. The actual reflectance distribution of
the wall and object surfaces was not perfectly Lambertian, and additional light emitters
and reflectors, not accounted for by the simulation, were present in the scene. To obtain a
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Figure 4.2: Intensity difference images. To investigate the effect of changes in object position
and orientation on the intensity distribution observed on the wall, we performed a simplified
synthetic experiment with an orthographic view of a 2 m×2 m wall, and laser spot and object
centered with respect to the wall. The reference distribution (bottom left) was produced by
a 10 cm×10 cm square-shaped object, located at 50 cm from the wall. Six difference images
(top row), obtained by translating (±2.5 cm) and rotating (±7.5◦) the object about the X, Y
and Z axes, illustrate the distribution and magnitude of the respective change in the signal.
The images shown in the bottom row visualize the difference caused by a change in shape.
For display, each difference image has been amplified by the indicated factor (2 to 100,000)
that also reflects the relative significance of the effect: Translations and rotations (except
around the Y axis) caused the signal to change by roughly 1% per centimeter or per angular
degree. A change in the object shape led to a peak difference around 1–2%, and rotation
around the Y axis had a much smaller effect.
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measured image M containing only light from the laser, we took the difference of images
captured with and without laser illumination. Additionally, we subtracted a calibration
measurement B̂ containing light reflected by the background. A specification of the devices
used, and a more detailed introduction of the data pre-processing steps, can be found in the
Methods section.

Tracking algorithm (analysis). With the light transport simulation at hand, and given
a measurement of light scattered from the object to the wall, we formulate the tracking
task as a non-linear minimization problem. Suppose M and S (p) are vectors encoding the
pixel values of the measured object term and the one predicted by the simulation under the
transformation parameter or scene hypothesis p, respectively. We search for the parameter
p that brings M and S (p) into the best possible agreement by minimizing the cost function

f(p) = ∥M− γ (M,S (p)) · S (p)∥22 , where γ(a, b) =
aT · b
∥b∥22

. (4.1)

The factor γ(a, b) projects b to a, minimizing the distance ∥a− γ(a, b) · b∥22. By including
this factor into our objective, we decouple the recovery of the scene parameter p from any
unknown global scaling between measurement and simulation, caused by parameters such
as surface albedos, camera sensitivity and laser power. To solve this non-linear, non-convex,
heavily over-determined problem, we use the Levenberg-Marquardt algorithm [Mar63] as
implemented in the Ceres library [AMO15]. Derivatives are computed by numerical dif-
ferentiation. When tracking six degrees of freedom (translation and rotation), evaluating
the value and gradient of f requires a total of seven simulation runs, or on the order of 25
milliseconds of compute time on our system.

Tracking result. To evaluate the method, we performed a series of experiments that
are analysed in Figure 4.4 and 4.5. The physical object used in all experiments was a car
silhouette cut from plywood and coated with white wall paint, shown in Figure 4.3a. While
our setup is able to handle arbitrary three-dimensional objects (as long as the convexity
assumption is reasonable), this shape was two-dimensional for manufacturing and handling
reasons.

For a given input image M and object shape, the cost function f(p) in Equation 4.1
depends on three to six degrees of freedom that are being tracked. Figure 4.3b shows a slice
of the function for translation in the XY-plane, with all other parameters fixed. Although
the global minimum is located in an elongated, curved trough, only four to five iterations of
the Levenberg-Marquardt algorithm are required for convergence from a random location in
the tracking volume. In real-time applications, since position and rotation can be expected
to change slowly over time, the optimization effort can be reduced to two to three iterations
per frame by using the latest tracking result to initialize the solution for the next frame.

In Experiment 1, we kept the object’s orientation constant. We manually placed the
object at various known locations in an 60 cm×50 cm×60 cm working volume, and recorded
100 camera frames at each location. These frames differ in the amount of ambient light
(mains flicker) and in the photon noise. For each frame, we initialized the estimated position
to a random starting point in a cube of dimensions (30 cm)3 centered in the tracking vol-
ume, and refined the position estimate by minimizing the cost function, Equation 4.1. The
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Figure 4.3: Object model and cost function used for tracking. a, photo of an object cut from
white plywood, and its representation as surface elements (surfels). Note that although we
use a flat object for demonstration, our method is also capable of handling three-dimensional
objects. b, XY slice of the cost function for positional tracking, centered around the global
minimum. With a perfect image formation model and in the absence of noise, the minimum
(marked by cross) and the measured position of the object (marked by circle) should coincide
at a function value of exactly f(p) = 0. Under real conditions, the reconstructed position
deviated from the true one by a few centimeters, and the minimum was a small positive
value.

results are shown in Figure 4.4a. From this experiment, we found positional tracking to be
repeatable and robust to noise, with a sub-cm standard deviation for each position estimate.
The root-mean-square distance to ground truth was measured at 4.8 cm, 2.9 cm and 2.4 cm
for movement along the X, Y and Z axis, respectively. This small systematic bias was likely
caused by a known shortcoming of the image formation model, which does not account for
occlusion of ambient light by the object.

In Experiment 2, we kept the object at a (roughly) fixed location and rotated it by a
range of ±30◦ around the three coordinate axes using a pan-tilt-roll tripod with goniometers
on all joints. Again, per setting we recorded 100 frames that mainly differ in the noise pattern.
We followed the same procedure as in the first experiment, except that this time we jointly
optimized for all six degrees of freedom (position and orientation). The results are shown in
Figure 4.4(b). As expected, the rotation angles were tracked with higher uncertainty than the
translational parameters, although the average reconstructions for each angle remain stable.
We identify two main sources for the added uncertainty: the increased number of degrees
of freedom and the pairwise ambiguity between X translation and Z rotation, and between
Z translation and X rotation (Figure 4.2). We recall that in the synthetic experiment, the
effect of Y rotation was vanishingly small; here, the system tracked rotation around the Y
axis about as robustly as the other axes. This unexpectedly positive result was probably
owed to the strongly asymmetric shape of the car object.

So far, we assumed that the object’s shape was known. Since this requirement cannot
always be met, we dropped it in Experiment 3. Using the data already captured using the
car object for the first experiment, we performed the light transport simulation using a single
oriented surface element instead of the detailed object model. Except for this simplification,
we followed the exact same procedure as in Experiment 1 to track the now unknown object’s
position. The results are shown in Figure 4.5(a). Despite a systematic shift introduced by

41



Chapter 4. Tracking objects outside the line of sight
using 2D intensity images

Figure 4.4: Tracking a known object. a, Result of three tracking sessions where the object
was translated along the X, Y and Z axes (Experiment 1). We recorded 100 input images at
each position and reconstructed the object position for each input image independently. Plots
and error bars visualize the mean and standard deviation of the recovered positions. The
area shaded in gray is the confidence range for the true position which was determined using
a tape measure. b, Result of three tracking sessions where the object was rotated around the
X, Y and Z axes (Experiment 2). From 100 input images, we jointly reconstructed translation
and rotation. Shown are mean and standard deviation of the recovered rotation angle. The
higher uncertainty reflects the fact that rotation in general has a smaller effect on the signal,
and the ambiguity between translational and rotational motion (also see Figure 4.2).
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Figure 4.5: Tracking of an unknown object, or in an unknown room. a, Result of Experiment
3: Positional tracking as in Experiment 1, but with no knowledge about the object shape.
We used a single oriented surface element for the light transport simulation. b, Result
of Experiment 4: Positional tracking as in Experiment 1, but without subtracting the pre-
calibrated room response. The estimated absolute position greatly deviated from the ground-
truth position (shaded areas). c, Subtraction of a linear fit significantly reduced the tracking
error and made the tracking task feasible even in the absence of a background measurement.
In all cases, the standard deviation (error bars) remained small, indicating that changes in
position could still be robustly detected.
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Figure 4.6: Approximating the background term by a linear model. From left to right, in
arbitrary units: background term B̂ obtained through calibration, linear approximation of
B̂, residual background term after subtraction of linear component.

the use of the simplified object model, the position recovery remained robust to noise and
relative movement was still detected reliably.

The need for a measured background term B̂ can hinder the practical applicability of our
approach as pursued so far. In Experiment 4, we lifted this requirement. When omitting
the term without any compensation, the tracking performance degraded significantly (Fig-
ure 4.5(b)). However, we observed that the background image, caused by distant scattering,
was typically smooth and well approximated by a linear function g(u, v) = au + bv + c in
the image coordinates u and v (Figure 4.6). We extended the tracking algorithm to fit such
linear models to both input images M and S (p), and subtract the linear portions prior to
evaluating the cost function (Equation 4.1). This simple pre-processing step greatly reduced
the bias in the tracking outcome and enabled robust tracking of object motion (Figure 4.5(c))
even in unknown rooms.

The supplementary video to this paper shows two real-time tracking sessions (Session 1:
translation only; Session 2: translation and rotation) using the described setup. A live view
of the hidden scene is shown next to the output from the tracking software. The average
reconstruction rate during these tracking sessions was 10.2 frames per second (limited by the
maximum capture rate of our camera-laser setup) for Session 1, and 3.7 frames per second
(limited by computation) for Session 2. The two-dimensional car model was represented
by 502 surfels; the total compute time required for a single tracking step was 72.9 ms for
translation only, and 226.1 ms for translation and rotation.

4.3 Discussion
The central finding of this work is that the popular challenge of tracking an object around
a corner can be tackled without the use of time-of-flight technology. By formulating an
optimization problem based on a simplistic image formation model, we demonstrated para-
metric object tracking only using two-dimensional images with a laser pointer as the light
source. In a room-sized scene, our technique achieves sub-cm repeatability, which puts it
on par with the latest time-of-flight-based techniques [Kad+16; Gar+16]. However, as our
technique does not rely on temporally resolved measurements of any kind, it has the unique
property of being scalable to very small scenes (down to the diffraction limit) as well as large
scenes (sufficient laser power provided). We note that the analysis-by-synthesis approach per
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se is not limited to pure intensity imaging, but may form a valuable complement to other
sensing modalities as well. For instance, a simple extension to the light transport model
would enable it to accommodate time-of-flight or phase imaging.

A key feature of the analysis-by-synthesis paradigm is its transparency. Putting a virtual
experiment (simulation) alongside the real experiment enables a rigorous quantitative analy-
sis of the sensing problem. Using difference images, for instance, we investigated the influence
that parameter changes have on the signal, and predicted the detectability of centimetre-scale
motion. The same mechanism could also be used to obtain robustness estimates regarding
additional unknowns in the scene model, such as non-diffuse object reflectance or the pres-
ence of additional objects. With these options, our approach offers a significant advantage
over existing non-line-of-sight sensing techniques.

The real-time performance of our technique is determined by four main factors: the
capture rate of the camera (constrained by exposure time and read-out bandwidth), perfor-
mance of the compute system, the discretization of the model into surfels and the number
of translational and rotational degrees of freedom afforded to the model. Other factors, in
particular the question whether object and room are known, are irrelevant with this regard.

We identify four main limiting factors to the resolution and repeatability of our tech-
nique. Firstly, shortcomings in the models for scene and light transport can introduce a
systematic bias. We exemplarily demonstrated how additional heuristic pre-processing steps
can mitigate this bias. In usage scenarios where systematic errors preclude quantitative
tracking, simpler sensing tasks, like the detection of object motion, will still remain possible.
Secondly, the tracking of additional parameters like rotation, non-rigid objects or multiple
object positions, is sensitive to image noise. The adoption of advanced filtering techniques
or multi-frame averaging will further improve the tracking quality. Furthermore, certain
applications will require a careful selection of the degrees of freedom afforded to the model.
Thirdly, like in all prior work, we assumed knowledge about the geometry and angular re-
flectance distribution of a wall that receives light scattered by the unknown object. Thanks
to recent progress in mobile mapping [Pue+13], highly detailed geometry and albedo texture
data is already widely available for many application scenarios; if not, it can be recovered
using existing line-of-sight sensing methods. Lastly, our tracking result is the outcome of a
local parameter search (Levenberg-Marquardt) and hence not guaranteed to be the global
optimum of the cost function, Equation 4.1. Although we never experienced convergence
problems in practice, some situations may necessitate a combination of global and local
optimization strategies.

The prospective of being able to sense beyond the direct line of sight can benefit many
application fields. So far, the deployment of existing approaches has been hindered by
practical limitations such as long capture times and device costs. As we were able to show
here, these limitations can in principle be overcome if the problem can be reduced to a small
number of degrees of freedom. One of the first applications of such reduced models could
be in urban traffic safety, where the motion of vehicles and pedestrians is constrained to
the ground plane. Extrapolating from our results, we believe that more detailed forward
models and efficient simulation techniques can become a source of profound insight about
non-line-of-sight sensing problems—and, eventually, enable the first truly practical solutions
for looking around corners.

45



Chapter 4. Tracking objects outside the line of sight
using 2D intensity images

4.4 Methods
Light transport simulation. Accurate simulation of indirect illumination is computa-
tionally expensive and can take hours to complete. By assuming that all light has undergone
exactly three reflections, we achieved a reduced overall computational complexity that is lin-
ear in the number of pixels and the number of surfels n. The geometry of this simulation is
provided in Figure 4.1b. Each camera pixel observes a radiance value, L, leaving from a point
on the wall, pW , that, in turn, receives light reflected by the object’s surfels. The portion
contributed by the surfel of index i ∈ {1 . . . n} is the product of three reflectance terms, one
per reflection event; and the geometric view factors known from radiative transfer [ÇG14;
Gor+84]:

Li := ρ0 · fs(pL − pS, pi − pS) (laser spot) (4.2)
· (nS◦(pi−pS))·(ni◦(pS−pi))

||pS−pi||22
· fi(pS − pi, pW − pi) · Ai (ith surfel)

· (ni◦(pW−pi))·(nW ◦(pi−pW ))

||pi−pW ||22
· fW (pi − pW , pC − pW ) (wall),

where the operator

v ◦ w :=

{
vT ·w

∥v∥2·∥w∥2
if vT · w > 0

0 otherwise

denotes a normalized and clamped dot product as used in Lambert’s cosine law. Each line
in Equation 4.2 models one of the three surface interactions. nS, ni and nW are the normal
vectors of laser spot, surfel and observed point on the wall, and f{S,i,W}(ωin, ωout) are the
values of the corresponding bidirectional reflectance distribution functions (BRDF). The
incident and outgoing direction vectors ωin and ωout that form the arguments to the BRDF
are given by the scene geometry. In particular, the vectors pL, pS, pi, pW and pC represent
the positions of, in this order: the laser source, the laser spot on the wall, the ith surfel, the
observed point on the wall, and the camera (center of projection). Ai is the area of the ith

surfel, and ρ0 a constant factor that subsumes laser power and the light efficiencies of lens
and sensor. This factor is cancelled out by the projection performed in the cost function
Equation 4.1, so we set it to ρ0 = 1 in simulation. The total pixel value is simply computed
by summing Equation 4.2 over all surfels:

Ltotal :=
n∑

i=1

Li (4.3)

This summation neglects mutual shadowing or interreflection between surfels, an approxi-
mation that is justifiable for flat or mostly convex objects. For lack of measured material
BRDFs, we further assume all surfaces to be of diffuse (Lambertian) reflectance such that
f{S,i,W} := const = 1, again making use of the fact that the cost function (Equation 4.1) is
invariant under such global scaling factors. If available, more accurate BRDF models as well
as object and wall textures can be included at a negligible computational cost.

Capture devices. Our image source was a Xenics Xeva-1.7-320 camera, sensitive in
the near-infrared range (900 nm–1,700 nm), with a resolution of 320×256 pixels at 14 bits
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per pixel. We used an exposure time of 20 ms. The laser source (1 W at 1.550 nm) was
a fiber-coupled laser diode of type SemiNex 4PN-108 driven by an Analog Technologies
ATLS4A201D laser diode driver and equipped with a USB interface trigger input. On the
output side of the fiber, we fed the collimated beam through a narrow tube with absorbing
walls to reduce stray light.

A desktop PC with an NVIDIA GeForce GTX 780 GPU, 32GB of RAM and an Intel
Core i7-4930K CPU controlled the devices and performed the reconstruction.

Measurement routine and image pre-processing. After calibrating the camera’s gain
factors and fixed pattern noise using vendor tools, we assumed that all pixels had the same
linear response. All images were downsampled to half the resolution (160×128 pixels) prior
to further processing. Due to the diffuse reflections, apart from noise, the measurements do
not contain any information of high spatial frequency. Thus, moderate downsampling is a
safe way to improve the performance of the later reconstruction.

The images measured by the camera are composed of several contributions, each repre-
sented by a vector of pixel-wise contributions: ambient light not originating from the laser,
A; laser light scattered by static background objects present in the scene, B; and laser light
scattered by the dynamic object, O. All measured images are further affected by noise, the
main sources being photon counting noise and signal-independent read noise. We assume the
scene to remain stationary at least during short time intervals between successive captures.
Further assuming the spatial extent of the object to be small, shadowing of A and B by
the object, as well as ambient light reflected by the object, can be neglected. By turning
the laser on and off, and inserting and removing the object, the described kind of setup can
capture the following combinations of these light contributions:

Laser off (0), object absent (0): I00 = A+ noise

Laser on (1), object absent (0): I10 = A+B+ noise

Laser off (0), object present (1): I01 = A+ noise

Laser on (1), object present (1): I11 = A+B+O+ noise

The input image to the reconstruction algorithm, M, was obtained as the difference of
images captured in quick succession with and without laser illumination. Additionally, we
subtracted a calibration measurement containing light reflected by the background:

M := I11 − I01 − B̂ ≈ O+ noise, (4.4)

The addition or subtraction of two input images increases the noise magnitude by a factor of
about

√
2. The background estimate B̂ was captured with the object removed by recording

difference images with and without laser illumination. We averaged n = 300 such difference
images to reduce noise in the background estimate:

B̂ :=
1

n

n∑
i=0

(
I
(i)
10 − I

(i)
00

)
n>>1
≈ B (4.5)
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CHAPTER 5

A Quantitative Platform for
Non-Line-of-Sight Imaging Problems

This chapter was published as a peer-reviewed paper at the British Machine Vision Confer-
ence in 2018 [Kle+18].
The authors are Jonathan Klein, Martin Laurenzis, Dominik L. Michels, and Matthias B.
Hullin.

The computational sensing community has recently seen a surge of works on imaging
beyond the direct line of sight. However, most of the reported results rely on drastically
different measurement setups and algorithms, and are therefore hard to impossible to com-
pare quantitatively. In this paper, we focus on an important class of approaches, namely
those that aim to reconstruct scene properties from time-resolved optical impulse responses.
We introduce a collection of reference data and quality metrics that are tailored to the
most common use cases, and we define reconstruction challenges that we hope will aid the
development and assessment of future methods.

5.1 Introduction
The challenge of imaging objects outside the direct line of sight is of great potential relevance
in many applications and has fascinated scientists, engineers and the general public alike for
many years. Recently, the introduction of computational sensing approaches has enabled
researchers to “look around corners” and given the topic new momentum [Kir+09; Vel+12].

Many published works aim at recovering various scene properties (room geometry, object
shape and position, materials) from time-resolved measurements of indirect light reflections.
However, the use of different measurement setups with different spatial and temporal res-
olution as well as the lack of standard targets and ground truth makes it hard to draw
meaningful comparisons between the reconstruction algorithms used, to derive recommen-
dations for future sensing designs, and to predict the performance of such designs under
real-world conditions. In fact, to this day it remains unknown what the theoretical and
practical limits of non-line-of-sight (NLoS) imaging are.
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Figure 5.1: In the most common scenario of NLoS reconstruction, the path traveled by the
light (laser-wall-object-wall-camera) consists of four segments a–d connected by three diffuse
reflections.

Here, we take a first step to fill this void by proposing a quantitative foundation that is
designed to facilitate the development, characterization and comparison of non-line-of-sight
reconstruction methods based on time-of-flight data. Our effort is threefold and comprises
the following main contributions:

• a database of annotated synthetic time-resolved scene responses that reflects common
reconstruction tasks in a hardware-independent manner,

• the development of task-specific error metrics to benchmark reconstruction results,
and

• supporting software infrastructure, namely a code repository and an online service that
hosts a selection of benchmarks and blind reconstruction challenges.

We hope that this quantitative platform will contribute to the consolidation of existing
research efforts, aid the development of future reconstruction techniques, and serve the
community as a device for adherence to, and documentation of, good scientific practice.

5.2 State of the art
We consider works that aim to circumvent the occlusion problem by using electromagnetic
waves where the occluder becomes transparent, such as radio waves [Adi+15; AK13; FC99],
or that exploit coherence properties of light, reconstructing objects using interferometry or
speckle correlation [Kat+14] to be outside the scope of this paper. Instead, we focus on those
that rely on geometric optics and classic radiative transfer. In the following, we provide an
overview of devices and setups, scene layouts and reconstruction algorithms of these works
and conclude the section with an attempt to unify the most relevant within our quantitative
framework.

5.2.1 Scene setup: three diffuse bounces
An object that is located within the direct line of sight of a camera or a structured light
source can be imaged either by direct observation or by probing it with a projector [Sen+05].
The challenge of “looking around corners” refers to settings where the target can neither be
directly illuminated nor observed, and where reflections off other objects (reflectors) are

50



5.2. State of the art

the only remaining source of information.1 The glossiness of these reflectors has a strong
influence on the amount of information they transmit (see [Kad+16] for a detailed analysis
of this trade space). The more mirror-like a surface is, the better it can be used to trivially
observe the occluded region; on the other end of the scale are diffuse surfaces that completely
destroy the directionality of light upon reflection.

This leads to a canonical scene arrangement that has been prominently featured in
most prior works [AGJ17; But+15; Car+17; Cha+17a; Gar+16; Hei+14; Kad+16; Kir+09;
Kle+16; LV14; Ped+17; Shr+16; Vel+12; War+16; Tsa+17; Hei+18] and that is illustrated
in Figure 5.1. The unknown target is located in front of a planar wall (or floor), and occluded
from direct observation. Illuminating a spot on the wall with a collimated light source (laser)
turns this spot into a small area light source which illuminates the target. A portion of the
light received by the target, in turn, scatters back to the wall, from where it is reflected into
a collimated detector or other imaging device. Eventually, the total path of light received by
the detector consists of four straight segments connected by three bounces. A common way of
interpreting this setting is to assume that the geometry of capture setup and wall are known.
Similar to treating the laser spot as a virtual area light source, the wall point observed by
the detector pixel can be interpreted as a virtual omnidirectional detector [Kad+16]. Only
considering the 2-segment light path between these virtual devices leads to a transform of
the time axis that has been called unwarping by Velten et al. [Vel+13].

5.2.2 Space-time impulse response / devices
The unavailability of a direct line of sight calls for alternative sources of information about
the unknown target. Often, ultrafast light sources and time-resolved detectors are used to
probe the temporal impulse response of the scene. This typically leads to the notion of a tran-
sient image I(u, v, τ), where u and v are the usual image coordinates and τ is the travel time
of light (Figure 5.2). We refer the reader to a recent survey on this general topic [Jar+17].
Among the devices used for the purpose are fast photodiodes [Kir+09], streak tubes [Vel+12],
gated image intensifiers [LV14] and avalanche photodetectors [But+15; Cha+17a; Gar+16;
Ped+17; Hei+18]. Although common sense dictates that a high spatial resolution requires a
high temporal resolution of the measurement equipment, other researchers have also demon-
strated the use of slower emitters and sensors for certain tasks. Examples include amplitude-
modulated continuous-wave (AMCW) time-of-flight setups [Hei+14; Kad+16; Shr+16] or
even entirely unmodulated intensity images [Kle+16].

5.2.3 Reconstruction tasks and algorithms
The non-line-of-sight sensing solutions reported in literature greatly vary in the number of
degrees of freedom, ranging from object detection, identification and tracking [Cha+17a;
Kad+16; Kir+09; Kle+16; Shr+16] via characterization of room shapes [Ped+17] to the
recovery of full three-dimensional shapes [But+15; Hei+14; Vel+12; Hei+18]. This also re-
flects in the variety of proposed algorithms, where we identify two main classes of approaches.
The first class aims to explain the observed signal in terms of a more or less sophisticated

1This also excludes settings like the one described by Jin et al. [Jin+14] that employ a pinhole to indirectly
image the hidden scene.
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(a) (b)

Figure 5.2: Slices of an unwarped transient image I(u, v, τ) of light reflected by an object
onto a wall as illustrated in Figure 5.1. u−τ slices (a) resemble streak images, whereas u−v
slices (b) can be interpreted as frames of a video of light in flight. (Range normalized for
display.)

forward model. For instance, researchers have proposed radiative transfer simulations based
on oriented surface patches [Kir+09; Kle+16; Ped+17], derived a linearized light transport
tensor [Hei+14; Hei+18], and exploited additional geometric constraints to express light
transport as a convolution of light cones [OLW18]. The problem of reconstructing the scene
s thus typically takes on the form of a regularized least-squares minimization of the difference
between the measured and simulated images.

The second class of reconstruction algorithms are based on the back projection principle,
where intensity values in the space-time response “vote” for feasible object locations within
a reconstruction volume. For each given sample, the manifold of such locations forms an
ellipsoid in space [Vel+13].

We are not aware of any systematic investigation as to which of these approaches is best
suited for a given reconstruction problem. For the back projection technique, La Manna et
al. compared different flavors (additive/multiplicative back projection) as well as different
iteration and filtering strategies [La +17].

5.3 Challenge design
On the highest level, the non-line-of-sight reconstruction problem addressed in our challenge
is: given the transient image I(u, v, τ), what is the scene s? Here, s can stand for any scene
properties that are of interest, like object or room shapes, object classes, object position and
orientation, material reflectance, texture, and so on. In this section, we aim to unify the
previously discussed work into our proposed evaluation benchmark.

5.3.1 Basic scene geometry
The huge variety of setups makes it hard to directly compare existing approaches and there-
fore calls for a unification. We propose a new, minimalistic setup that only consists of the
key elements that are common in the previous setups, as shown in Figure 5.3. Our scene only
consists of a light source, an object reflecting the light and the wall receiving the reflections.
Currently all scenes contain only a single object, some examples of which can be seen in
Figure 5.5a.

Notably, this setup does not include an actual occluder or, in general, a scene surrounding
the wall and the object. In previous publications it has been usually assumed that these
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Figure 5.3: Our unified scene geometry.

elements do not interact with the light transport via occlusions or reflections and thus their
existence is usually neglected.

The setup consists of a single laser spot, which is centered on the wall and forms the origin
of the coordinate system. An array of observation points sample the backscatter arriving at
the wall. Due to the reciprocity of the light transport, our data can also be used for methods
assuming a single observation and multiple illumination points. We do not include the most
general (five-dimensional) case with multiple observation and multiple illumination points,
as capturing and storing such data would be intractable in practice. Attempts which require
this more general transient images (such as [OLW18]) only use a certain subset of them, but
there is currently no agreement on a specific subset. When a new standard emerges, our
database will be updated accordingly.

Scene objects are placed at different positions inside a volume in front of the wall such that
their projection on the X/Z plane lies always completely inside the wall. This constellation
can be considered a sweet spot for the reconstruction, although in practice, placing the laser
spot within the detector’s field of view would make the setup more prone to lens flare.

Almost all previous work assumes perfectly diffuse materials, which is why most of the
objects in our benchmark are perfectly diffuse as well. To probe the limits of the diffusity
assumption, some objects use a shiny metal material, based on the GGX model [Wal+07].
Since material reconstruction is not part of the benchmark in this first iteration, all material
parameters are provided.

5.3.2 Data units and formats
Our image formation models does not contain any nonlinearities and thus the actual scale
of the setup is irrelevant. The dimensions shown in Figure 5.3 are derived from an extensive
analysis of the proportions of setups found in the literature (see supplementary). Expressing
the temporal dimension in terms of the optical path length allows us to use the same arbitrary
units for spatial dimensions and time of flight.

With the exception of [Kle+16] all considered hardware platforms use time-resolved data
for the reconstruction, but the data format depends on the used hardware. We provide raw
transient data in a generic format that can be converted to any kind of hardware format
(including the intensity images used in [Kle+16] by integrating over the time dimension).
An example of a transient image can be seen in Figure 5.2.
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All our data are time unwarped (path segments a and d in Figure 5.1 are removed), but
we provide a conversion tool in which a camera and laser position can be specified. The tool
inverts the unwrapping, including a cropping and perspective transformation of the reflector
wall. Additional corruption of the data by various noise sources is also possible (see the
supplementary for detail). Contestants are encourage to use these tools to produce realistic
raw data for their setups (including sensor response, additional lens distortion, conversion
to camera data format, and other effects). The results on these data reflect how they behave
in realistic setups but are not part of the competition as the different setups make them
incomparable.

5.3.3 Transient image generation
We motivate the usage of synthetic renderings instead of real measurements in two ways:
firstly, each hardware has its own limitations and no setup can capture the actual transient
light transport directly. Secondly, ground truth data is required for the evaluation. Building
and measuring a real scene will inevitably introduce certain errors and would also prevent
the usage of the minimalistic setup shown in Figure 5.3. Thus synthetic renderings provide
both high-quality transient images and high-quality ground truth data.

As rendering tool, we extended pbrt-v3 [PJH16], a state-of-the-art, multi-purpose global
illumination renderer with special focus on physical accuracy, by tracing the path lengths
and writing three-dimensional transient output. The correctness of the obtained images
was verified as follows: We assume that the intensity images computed by the unmodified
pbrt-v3 are physically accurate, as one of its explicit design goals is physical accuracy, it
has been around for many years and its open source code has been studied by hundreds of
scientists worldwide. We integrated transient images over the temporal domain and success-
fully compared it to the intensity rendering of the same scene, meaning that each transient
pixel has the correct total amount of light. We checked the correct temporal distribution by
rendering test scenes with sharp temporal responses whose time offsets are easily measur-
able. Lastly, the importance sampling was successfully verified by rendering the same scene
with enabled and disabled importance sampling to almost full convergence and comparing
the results.

Rendering noise-free images with global illumination is computationally expensive and
the additional third dimension of transient images reinforces this problem drastically. The
images are rendered with a spatial resolution of 256×256 pixels and a temporal resolution
of 1600.

For a detailed description of the data formats and renderer implementation, we refer to
the supplementary material.

5.3.4 Submission
The data sets for our reconstruction benchmark are available through a web frontend at
https://nlos.cs.uni-bonn.de/. The functionality of the system is inspired by existing
offerings, in particular the known two-view and multi-view stereo reconstruction challenges.
Besides the transient data sets, users can download an SDK with functions for data handling,
error metrics and a base-line reconstruction algorithm, namely ellipsoidal back projection.
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Users can create an anonymous account to upload their reconstructions and have them
scored against the ground truth. The scores are time-stamped and can be submitted to the
leaderboard (in anonymized or de-anonymized form), where they are compared to the scores
of other contestants.

5.4 Scenes
We present a set of challenges, each tailored to a specific problem in non-line-of-sight imaging,
and introduce appropriate metrics for their evaluation. A complete list of all scenes is found
in the supplementary.

Apart from the four challenges presented here, our platform is open for future exten-
sions ranging from material reconstruction [24], non-rigid pose estimation (like tracking of
articulated human motion) to complex scenes with many detailed objects.

5.4.1 Materials
Our data set contains models with two different materials. Non-line-of-sight imaging liter-
ature commonly assumes that the hidden scene is perfectly diffuse. We thus use a diffuse
material (with an albedo of 0.8) for most objects. To reflect real-world situations, we “pol-
lute” our database with roughly 25% objects that are made of a non-diffuse material, namely
pbrt’s default metal material which implements Walter et al.’s GGX model [Wal+07]. The
material parameters k= 3.63 and eta= 0.216 represent copper at a wavelength of 650nm.
They are kept constant throughout the whole benchmark. While this additional variation is
not sufficient to include the reconstruction of material parameters in the challenge, it probes
how well different reconstruction algorithms handle different materials, or how much they
are influenced by the invalid assumption of a diffuse world.

5.4.2 Geometry reconstruction
The goal of this challenge is to reconstruct the object’s geometry from a single transient
image as illustrated in Figure 5.4a. For this, sixteen different object types with varying
complexity are provided.

In order to evaluate the results, ground truth mesh and reconstructed mesh have to be
compared. There exist a wide variety of classical metrics for mesh comparison employing
measurements of surface distance and curvature [RR96; SZL92] or volume [LT98]. A global
comparison between two meshes can be achieved using an error metric based on the Hausdorff
distance [KLS96]. However, there is no uniquely best metric and an appropriate choice
depends on the specific scenario.

Since we are dealing with opaque objects and thus the reflected light does not carry
any information about its inside, the application of a surface metric is a natural choice.
More precisely, we chose to compare triangle meshes, as they are a widely used and easily
processable surface representation. We define our metric as follows. Let M ⊂ R3 be a mesh
described by its triangulation T ⊂ R3 × R3 × R3. Consider a triangle t := (vt

0,v
t
1,v

t
2) ∈ T

with its corner vertices vt
i . Its center is given by ct = (vt

0 + vt
1 + vt

2)/3 and its area by
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At = ∥(vt
1 − vt

0)× (vt2 − vt
0)∥/2 in which ∥ · ∥ denotes the Euclidean norm. The asymmetric

distance from a triangle mesh M0 to another triangle mesh M1 is then given by

d (M0,M1) =
∑

t0∈M0

At0

AM0
min
t1∈M1

∥ct0 − ct1∥ (5.1)

with AM0 =
∑

t0∈M0
At0 , and the symmetric distance by

D (M0,M1) = max (d (M0,M1) , d (M1,M0)) . (5.2)
Essentially, the average distance per surface area is computed. With G as the ground

truth mesh and R as the reconstructed mesh, we store both distances d (R,G) and d (G,R)

as they represent different quality indicators. For example, d (R,G) = 0 is reached if only a
single point is reconstructed correctly while d (G,R) = 0 is reached when the reconstruction
contains the whole volume. Other properties of this metric are:

• Neutrality of treatment due to area-weighting: every part of the mesh is of the same
importance, standard operations like subdivision are handled appropriately.

• Robustness to incompleteness and overcompleteness: if M1 ⊂ M0, the superfluous
parts of M0 would not have a good match and thus increase d (M0,M1). Likewise
M0⊂M1 is handled by D (M0,M1). Superfluous geometry far away from the mesh
receives a stronger penalty.

The reflected signals contains mostly information about the front side of the object.
Therefore also only the front sides of objects are considered in the evaluation by filtering out
triangles that face away from the wall.

Some proposed algorithms reconstruct occupancy or probability volumes. Such volu-
metric representations can be converted into triangle meshes using an implementation of
Marching Cubes [LC87] that is provided as part of the SDK. Contestants concerned about
the triangulation quality are encouraged to use a different implementation.

5.4.3 Position and orientation tracking
In object tracking the goal is to reconstruct the position and orientation of an object for
each frame resulting in a full trajectory reconstruction, see Figure 5.4c. For that, different
objects with known and unknown geometries are provided.

For each object there are four different animation tracks: i) object moves along the three
main axes, ii) object rotates around the three main axes, iii) object moves along a complex
path, and iv) object moves along a complex path and adopts its orientation. For each object,
individual paths are used.

Animation tracks are limited to 40 frames to keep the database size manageable, where
each frame consists of a position (the objects center of mass) and an orientation. Two
paths P and P ′ with P = (p0,p1, . . . ,pn−1)

T with pi = (pxi , p
y
i , p

z
i ) ∈ R3 are compared by

computing the root-mean-square (RMS) error:

∥P − P ′∥pos =

√√√√ 1

n

n−1∑
i=0

∥pi − p′
i∥

2. (5.3)
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(a) (b) (c)

Figure 5.4: (a): Exemplary geometry reconstruction. The basic shape of the bike object
(blue) is recognizable in the reconstruction (green), however details like saddle, pedals and
handlebar are missing. (b–c): Trajectory reconstruction. (b): The ground truth trajectory
is shown in blue, the reconstructed in orange. (c): After subtracting a constant offset, the
trajectories are close together, except for two outliers.

Since this metric penalizes outliers, contestants are encouraged to apply appropriate outlier
detection and removal, e.g., by comparing the result to neighboring time frames. Further-
more, the computed centers of mass of the objects might be biased, so a least-squares optimal
constant offset x between P and P ′ is computed.

For the evaluation, the minimal path distance S = ∥(P − x)−P ′∥pos, the length of the
offset ∥x∥ and the completeness (the number of reconstructed frames divided by the total
number of frames) are evaluated.

Orientations are treated in a similar fashion: given orientations q and q′ in quaternion
representation, the difference is computed by the unit quaternion dot product metric

∥q − q′∥quat = 1− |⟨q, q′⟩| ∈ [0, 1] ,

where |⟨·, ·⟩| denotes the absolute value of the dot product between the four components of the
quaternions [Huy09]. Defining the original orientation of the object is not as straightforward
as defining its origin as its center of mass. Therefore the initial orientation for the first frame
of each animation is given, and thus only n− 1 frames are evaluated. With this metric, the
orientation reconstruction accuracy is evaluated analogously to the path distance, including
the completeness score.

5.4.4 Classification
The goal of the classification challenge is to accurately determine the type of an object.
For that we provide a classification data set which consists of eleven known models, see
Figure 5.5a. Each model is rendered at various positions and orientations inside the usual
volume. The goal is to decide for each scene, which of the objects is shown. This challenge
is expected to be the easiest as the possible output has a very limited range.

Classification results are evaluated in a confusion matrix using the harmonic average of
precision and recall (F1 score). In general, fuzzy classification is used; algorithms that do a
hard classification consequently restrict their weights to 0 and 1. If no solution is provided
for a certain frame, identical weights for all classes are assumed.
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(a) (b) 4× 4 (c) 16× 16 (d) 128× 128

Figure 5.5: a) Classification data set. Overview of the eleven different models used for the
classification challenge. b-d) Example textures from the texture reconstruction challenge.
The textures have different resolutions and different color depths.

5.4.5 Texture reconstruction
For the texture reconstruction challenge, a known, planar geometry is set up in parallel to
the reflector at a specified position. It has varying textures which have to be reconstructed.
They are split in three classes with increasing resolution and color depth (4×4 pixels in black
and white, 16×16 pixels in 5 gray values, and 128×128 pixels in 256 gray values). Examples
of the different classes can be seen in Figure 5.5.

Non-line-of-sight texture reconstruction has some unique characteristics that need to be
taken into account, when a comparison metric is defined. Although no publication so far
directly tackled the problem of texture reconstruction, a few have reconstructed flat letters,
a problem that is similar in nature. Based on these results we expect reconstructed texture
to cover the low-frequency content better than the high-frequency details. Thus we propose
a multi-scale approach which compares different frequency bands independently.

Given an n×n-pixel texture T ∈ [0, 1]n×n in which n is a power of 2, we compute a
Laplacian pyramid by iteratively blurring and downsampling T , and storing the differences
between the steps in the individual pyramid layers [BA87]. This essentially decomposes the
image into its different frequency components.

Let Tn,Tn/2, . . . ,T1 respectively T ′
n,T

′
n/2, . . . ,T

′
1 denote the individual pyramid layers.

The differences between each layer are computed by applying the Frobenius norm ∥ · ∥F onto
the texture difference Tn − T ′

n and normalizing the result by n2. This allows for quality
measurement on different scales, e.g., by taking the square root of the average squared
per-pixel differences √

∥Tn − T ′
n∥2F

n2
,

√
∥Tn/2 − T ′

n/2∥2F
(n/2)2

, . . . , |T1 − T ′
1|. (5.4)

Next to these quality indicators on each scale, its (uniformly weighted) squared average value

∥T − T ′∥img =

√√√√∑log2(n)
i=0 ∥Tn/2i − T ′

n/2i
∥2F/(n/2i)2

log2(n) + 1
(5.5)

is used as a quality metric.
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5.5 Reconstruction results
With the exception of Arellano et al. [AGJ17], reconstruction code is not available, making
the comparison challenging. We therefore seed our reconstruction challenge with the de-
facto standard reconstruction method, ellipsoidal back projection, using the implementation
of [AGJ17]. Its generality and ubiquity (as well as the lack of general-purpose alterna-
tives) makes back projection a natural baseline for current and future work. Although the
method itself can only be used for geometry reconstruction, we implemented a straightfor-
ward extension for position tracking (where the object position is defined as center of mass
of the reconstructed volume). We imagine that adaptations to the other challenges can be
developed as well, but consider this to be beyond the scope of this benchmark.

Results of the geometry reconstruction and object tracking are shown in Figure 5.4.
Exact numbers for each scene are found in the supplementary material.

5.6 Discussion and outlook
In this paper we introduced methodology and a data foundation for a first reconstruction
benchmark for non-line-of-sight imaging. The research in the field so far resembles a collec-
tion of isolated data points, most of them with promising and inspiring results but without
strong links to other pieces of work. Of course, in light of the diversity of tasks, scales and
devices, all a database like ours can ever hope to provide must be a compromise. Neverthe-
less, we hope that this work can act as a seed for a continuing effort to draw quantitative
connections between past and future efforts that will further unify the field.

As the research advances, we plan to constantly update the database with new recon-
struction problems and realistic data (e.g. light scattered from the scene background that
needs to be filtered out by contestants). We also hope that more researchers will be willing to
share their reconstruction code in order to build an open source repository of reconstruction
algorithms.

The database, the submission system, and all other material is available on our website at
https://nlos.cs.uni-bonn.de/.

Supplemental material
This document contains supplementary information for A Quantitative Platform for Non-
Line-of-Sight Imaging Problems. Sections are self-contained and they are not necessarily
meant to be read in order.

5.A Challenge design

5.A.1 Setup size and geometry
Our setup uses arbitrary units, but nevertheless we have to decide on the proportions of the
individual parts. As the setups in the previously published work vary greatly (see Table 5.1),
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A

B

C

Figure 5.6: We categorize existing setups by the ratios of the reflector (A), distance to the
object (B) and the size of the object(C).

we focused on three main quantities: The size of the reflector, the distance between object
and reflector and the size of the object itself (see Figure 5.6).

We chose the size of our setup (shown in Figure 5.3) by taking the geometric mean
of the individual values and applied some manual adjustment (e.g., particularly difficult
proportions were weighted less, if the reported results on them are inferior to the average).

Other interesting quantities of setups are its temporal resolution T , as well as the number
and distribution of directly visible scene locations that are illuminated (Ni) and observed
(No) over the course of the measurement routine. They are also shown in Table 5.1. We ori-
ented our temporal resolution towards the resolution of streak cameras [Vel+12], as they offer
the highest resolution and use a single illumination point with a regular grid of observation
points.

Table 5.1: Key specifications for various setups reported in literature: temporal resolution T

(histogram bin size or point spread function, whichever is greater); numbers of observed (No)
and illuminated (Ni) locations; scene dimensions A, B and C as illustrated in Figure 5.6;
and ratios of these dimensions. All values are approximate; those in parentheses have been
estimated by authors of this paper from information provided in the respective works. Entries
marked AMCW or ∞ denote amplitude modulated correlation sensors and steady-state
intensity imagers, respectively.

Ref. T [ps] No Ni A [cm] B [cm] C [cm] A/B B/C

[Kir+09] 250 1 1 (2.5) (4.3) (3) 0.6 1.4
[Nai+11] 1.6 (672×512) > 1 25 (15) (1–1.5) 1.6 12
[Vel+12] 15 672 > 1 40×25 25 1.5×8.2 1.4 5
[Hei+14] AMCW 160×120 1 200 150 (80) 1.3 1.8
[But+15] 30 1 185 100×80 150 40 0.6 3.8
[Kad+16] AMCW 176×144 1 200×100 100 4 1.5 25
[Kle+16] ∞ 320×240 1 130 (60) 80×30 2.1 1.2
[Gar+16] 110 32×32 1 15×30 45 30×10 0.5 2.6

[Cha+17a] 64 3 1 30 50 15×15 0.6 3.3
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5.B Data sets
All data sets are rendered using the scene arrangement illustrated in Figure 5.3. Data is
provided as transient images I(u, v, τ), where the image coordinates (u, v) ∈ [0, 1, . . . , 255]2

address square-shaped wall elements (“pixels”) of size 0.0022 in the X-Z plane, and the τ

dimension is discretized in 1600 bins of size dτ = 0.001 starting at τ = 0 (τ is a measure of
the path length and must be divided by the speed of light to retrieve the travel time). The
exchange format for transient images is specified in Section 5.D. Extents and discretization
of the temporal dimension are specified within each data set.

5.B.1 Geometry reconstruction
We consider geometry reconstruction the most important challenge, as it is not only the
focus of most of the previous work, but also the most general problem with the highest
number of degrees of freedom. In most scenarios, once a full geometric scene model has been
reconstructed, derivative information such as object positions or classes can be obtained
more easily from three-dimensional geometry than from from raw transient images.

We split our test scenes into several categories that test different capabilities of solvers.
Each scene contains a single object which has to be reconstructed. We define five categories
of objects:

Cat. 1 Two-dimensional shapes. This category contains two-dimensional objects of a certain
thickness perpendicular to the wall. This category is closely related to the texture
reconstruction challenge (Section 5.B.4).

Cat. 2 Simple geometric shapes. Objects with simple mathematical descriptions without
additional surface details.

Cat. 3 Simple objects. Everyday objects from the real world, with limited geometric detail.
Objects in this category are not easily approximated by the shapes of the previous
category.

Cat. 4 Complex objects. Highly non-convex objects with complex shape but without fine
surface details.

Cat. 5 Difficult objects. Objects with thin elements, fine structures and complex topology
(e.g. many holes).

A full listing of data sets is given in Table 5.2. To facilitate the development and refine-
ment of reconstruction techniques, ground truth geometry in .obj format is provided for
some of the data sets; for all others, the true geometry remains unknown.

5.B.2 Position and orientation tracking
For tracking, three different rigid objects are used: a sphere, a golem figurine and an airplane
(see Table 5.3). For each object, there are a total of four challenges:
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Table 5.2: Objects and their categories for the geometry reconstruction challenge.

Category Data set name Material Ground truth provided
1 LetterK diffuse yes
1 LetterQ diffuse no
2 Box diffuse yes
2 Cone diffuse no
3 StanfordBunny diffuse yes
3 UtahTeapot diffuse yes
3 Ax diffuse no
3 Hammer diffuse no
3 Cup specular no
4 StanfordDragon specular yes
4 Dinosaur diffuse no
4 FlyingDragon diffuse no
4 IndoorPlant diffuse no
5 Chair diffuse no
5 Bike specular no
5 Greenhouse specular no

1. movement along the three main axes without rotation,
2. rotation at a fixed position along the three main axes,
3. movement along a complex path with constant orientation and
4. movement along a complex path while changing orientation.

Due to its symmetry, the challenges involving rotations are not included for the sphere
data set. The paths are different for each object and challenge, e.g. the golem moves along
one path with constant orientation and along another path for the combined orientation and
translation.

The object origins lie in the center of mass for each object. This way, the object position
is uniquely defined for an ideal reconstruction of the scene, however we do expect a certain
bias in the position in realistic scenarios. Therefore we consider the residual RMS to be the
most important metric.

Each path forms a loop and contains 40 frames. The axes movement and static rotation
consist of 30 frames, with 10 frames for each axis. The movements and rotations around
the axes are designed to be easy to reconstruct and to make systematic errors and missed
frames obvious.

The exact geometry of the golem is given as an .obj file and can be used to improve the
reconstruction (e.g., by fitting it into a partial geometric reconstruction of each frame). The
shape of the airplane is not revealed to test tracking of unknown objects.

5.B.3 Object classification
The goal of the object classification task is to assign the transient image to one of eleven
object geometries, as listed in Table 5.4 and shown in Figure 4a in the main paper. All
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Table 5.3: Overview of the object tracking data sets.

Data set name Material Shape known Position Rotation
SphereAxesPos diffuse yes yes no
SpherePathPos diffuse yes yes no
GolemAxesPos diffuse yes yes no
GolemAxesRot diffuse yes no yes
GolemPathPos diffuse yes yes no
GolemPathRot diffuse yes yes yes
AirplaneAxesPos specular no yes no
AirplaneAxesRot specular no no yes
AirplanePathPos specular no yes no
AirplanePathRot specular no yes yes

Table 5.4: Overview of the object classification data set.

Data set name Material
Cat diffuse
Icosphere diffuse
LetterG diffuse
Parallelepiped diffuse
Plant diffuse
SpoonDiffuse diffuse
Whale diffuse
Gramophone specular
Headphones specular
Pan specular
SpoonSpecular specular

object shapes are given as .obj files and should be used to perform the classification.
The objects were scaled to equal surface area to prevent classifying by the size of the

object, i.e. amount of reflected light. However, this approach is not necessarily perfect as
very compact or concave objects appear smaller when scaled by their surface area.

5.B.4 Planar textures
In this challenge, a textured planar target of extent (x, z) ∈ [−0.1, 0.1]2 placed in front
of the laser spot at y = −0.3 (see Figure 5.7) is the subject of the reconstruction. The
texture, represented by a grayscale image of dimension n× n, modulates the albedo (diffuse
reflectance) of the surface. Each value ρs,t within the texture covers a square-shape region
of size (0.2/n, 0.2/n) with a value in the range of [0, 1]. We provide a variety of data sets
that feature black-and-white and grayscale textures of different resolution (Table 5.5).

For the evaluation, results with arbitrary resolutions are supported. If the reconstruction
T ′ has the same resolution as the reference, identical decomposition steps can be applied.
Otherwise it is scaled to the closest power of 2 before decomposing it. If the pyramid of
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Figure 5.7: Texture reconstruction setup.

Table 5.5: Overview of the texture reconstruction data sets.

Data set name Resolution Pixel depth
Character 4× 4 {0, 1}
Digit 4× 4 {0, 1}
Letter 4× 4 {0, 1}
Smiley 4× 4 {0, 1}
House 16× 16 {0, 0.25, 0.5, 0.75, 1}
Number 16× 16 {0, 0.25, 0.5, 0.75, 1}
Pattern 16× 16 {0, 0.25, 0.5, 0.75, 1}
Text 16× 16 {0, 0.25, 0.5, 0.75, 1}
Books 128× 128 [0, 1]

Concert 128× 128 [0, 1]

Fan 128× 128 [0, 1]

Industrial 128× 128 [0, 1]

the reconstruction contains more layers (i.e. it had a higher input resolution), the highest
layers are discarded; if it contains fewer layers, the missing ones are filled with zeros (as it
did not contain any information about the higher frequencies). Therefore, reconstructions
in the reference solution are preferred.

5.C Rendering
We used a modified version of pbrt-v3 [PJH16] to render the transient images.

5.C.1 Importance sampling
The transient images of our scenes contain only light from indirect reflections, which can
make the rendering very inefficient if no special care is taken. Sampling from the wall towards
the light source is futile, as the laser spot illuminates only the object, not the wall. Sampling
the hemisphere over the wall is inefficient, as most objects of interest only cover a small solid
angle on the hemisphere and are thus unlikely to be hit.
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To improve the performance for this light transport scenario, we implemented a custom
importance sampling that is heavily inspired from the area light source sampling already
implemented in pbrt-v3. The triangles of the object are stored in a special list and both the
wall and the object triangle are tagged with specific flags. During path tracing, everytime
a ray hits the wall, we can sample directly into the direction of the object, as the wall can
only receive light that was reflected from the object. These samples need to be normalized
by considering the area, angle and distance of the triangle of the object to ensure the correct
expected value of the sampling.

Our tests show that this custom importance sampling is two to three orders of magnitude
more efficient than naive sampling. Physical correctness is preserved by only eliminating
zero-radiance paths, e.g. interreflections on the object surface remain untouched by this
optimization.

5.D Transient image files
As of writing this paper, there is no standard format for storing transient images. It would
seem like an canonical and attractive choice to resort to standard image formats for which
suitable I/O libraries exist; however, such files would have to be accompanied by separate
metadata specific to the data set, and most image formats rigidly adhere to a Cartesian pixel
arrangement. Custom formats have also been proposed, for example Arellano et al.’s .float
and .lasers files [AGJ17], a format that would require thousands of individual files to store
a single data set from our database, and in its current form is not expressive enough to cover
new capture geometries such as O’Toole et al.’s confocal setting [OLW18]. We therefore
propose a new format that is compact (one file per data set), easy to read and write, and
at the same time flexible enough to cater to the needs of emerging research directions. Here
we give a high-level overview over the file format. A detailed implementation guide comes
as part of the SDK.

A transient image file consists of 4 blocks: The file header contains general information
and the sizes of each remaining block. The pixel data block contains a linear array of transient
pixels. The pixel interpretation block is an efficient representation of the illumination and
observation points of each pixel. Finally, the image properties block contains arbitrary,
JSON-encoded meta-data of the image.

For the pixel interpretation and image properties blocks we made some noteworthy design
choices, which we will discuss in the following.

5.D.1 Pixel interpretation block
Traditionally, a single point on the reflector is illuminated while a regular grid of points on
the reflector is observed. Due to the reciprocity of the light transport, this can be reversed,
e.g. as done by Buttafava et al. [But+15]. In general, multiple illumination and observation
points can be used (which may or may not be arranged in a regular grid), and in the extreme
case of [OLW18], a unique illumination and observation point is used for every pixel.

To support all these cases and still have an efficient representation of our data, the obser-
vation and illumination points can be stored in different modes. Mode 0 is the most general
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(a) Top to bottom: d (R,G) (b) Bottom to top: d (G,R)

Figure 5.8: Illustration of the correspondence selection for our surface comparison metric.
For each triangle of the source, the closest triangle of the target is selected. The lower object
is the ground-truth geometry G, while the upper object is the reconstruction R.

one and requires no structure in the observation or illumination points. They are stored
for every pixel individually, however this introduces a certain overhead (which becomes ne-
glectible, if each pixel consists of a large number of bins). The SDK provides an upconverter
to Mode 0 from the other, more specialized ones.

Mode 1 assumes a single illumination point and a regular grid of observation points, thus
the transient image has a meaningful x and y resolution. Observation point positions are
implicitly stored by the grid properties and their position in the linear pixel data array (as
it is the case in raster graphic formats). Mode 2 is the reciprocal case, where the roles of
observation and illumination points are reversed.

5.D.2 Image properties block
Image meta-data is widely used to store additional information such as the camera settings
used to capture the image. In Transient image files they are stored as an UTF-8 encoded
JSON string at the very end of the file. A number of standard fields are specified, however
users are free to add their own ones.

This approach has multiple advantages: Meta-data can be read and written using a
binary-compatible text editor, all fields are optional, new properties can easily be added,
and readers and writers are quick to implement due to the wide availability of JSON en-
/decoders.

5.E Comparison metrics
Figure 5.8 shows how the closest points are selected during the evaluation of the asymmetric
mesh-to-mesh distance (according to Equation 5.2). The reconstruction R (top) misses the
right third of the surface that is known to exist in the ground-truth mesh G (bottom), and it
has a finer tessellation in the middle segment. In the distance from reconstruction to ground
truth, this results in more connections in the middle segment, compared to the left segment.
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Table 5.6: Asymmetric reconstruction errors between a fast back projection reconstruc-
tion (M1), a ground truth mesh (M2) and the same mesh after one level of Catmull-Clark
subdivision (M3). In boldface, the distance d (G,R) from ground truth to a test geome-
try measures the incompleteness of the reconstructed surface. As intended by design, this
distance measure is significantly less sensitive to remeshing (third row) than it is to actual
missing geometry (first and second rows).

Comparison d (R,G) d (G,R)

R = M1, G = M2 5.255 · 10−3 1.819 · 10−2

R = M1, G = M3 5.132 · 10−3 1.813 · 10−2

R = M3, G = M2 4.729 · 10−4 6.438 · 10−5

Some of these connections are shorter and some are longer, but their average is roughly the
same as in the case of equal tessellation. As they are weighted by the triangle area, the
total cost for the middle part does not increase significantly by the additional connections.
Overall, the cost is quite similar to the leftmost geometry segment.

The right part of G is missing in R. In the distance from original to reconstruction
(d (G,R)), this results in longer connections and thus in increased cost.

Additionally, the misalignment of the meshes increases the length of all connections and
thus the overall distance.

The tessellation of an object does have a certain influence on the comparison result;
however, it is small. To avoid bias from tesselation, all used models are tessellated finer than
the maximal expected reconstruction resolution. Furthermore, trivial subdivision of the
triangles can further reduce this bias if needed and does not require to render or reconstruct
the scenes again.

In Table 5.6, we compare the reconstruction error introduced by a change in tessellation
to that of a state-of-the-art reconstruction.

5.E.1 Back face culling
Under normal conditions, it cannot be expected that the backside of an object can be well
reconstructed, as usually little to no information will reach the wall. Therefore triangles
facing away from the reflector are discarded before the mesh distance is evaluated.

Figure 5.9 shows an example of a triangle that is pointing away from the reflector but still
visible from the laser spot. We use this visibility of the laser spot as a culling criterion, instead
of only checking whether the face normal is pointing away from the reflector. This is still not
always correct, as global illumination can also allow light from culled triangles to reach the
reflector (and likewise, triangles facing towards the reflector can be completely occluded),
but taking all of these effects into account is not possible in a simple and transparent manner.

5.F Tools
We provide a variety of tools for handling the transient images. At the core are loaders and
writers for various programming languages including C++, Python and Matlab. Together
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Wall

Laser

Triangle

Figure 5.9: Culling of back faces. Triangles that are facing away from the laser spot
(x, y, z) = (0, 0, 0) are removed from the comparison. All others are kept, even those whose
normal vector points in positive z direction (away from the wall).

Table 5.7: Fast back projection reconstruction results. a) Geometry reconstruction: The
greater number of the two (marked in bold) is the symmetric distance of reference and recon-
struction (see Equation 5.2). b) Position tracking: Columns from left to right: RMS distance
(see Equation 5.3), offset length, RMS residual after subtraction of offset, completeness of
trajectory (percentage of recovered frames).

(a)
Scene d (R,G) d (G,R)

Axe 0.00376 0.00645
Bike 0.00675 0.00916
Chair 0.00429 0.0137
Cone 0.0129 0.00867
Cube 0.0743 0.00686
Cup 0.00809 0.0283
Dino 0.00500 0.0172

Dragon 0.0128 0.00453
Greenhouse 0.0133 0.0200

Hammer 0.0108 0.00876
IndoorPlant 0.00438 0.0162

K-Letter 0.0200 0.00734
Q-Letter 0.00625 0.00631

StanfordBunny 0.00356 0.0155
StanfordDragon 0.00359 0.0202

UtahTeapot 0.00341 0.0362

(b)
Scene RMS dist. ∥Offset∥ RMS res. Compl. [%]

Golem Axes 0.0238 0.0216 0.0101 100
Golem Path 0.0685 0.025 0.0638 100
Sphere Axes 0.0488 0.0485 0.0056 100
Sphere Path 0.0535 0.0504 0.018 100
Plane Axes 0.0269 0.0127 0.0237 100
Plane Path 0.05 0.0167 0.0472 100

with the file format description, they should allow a quick integration of our data sets in
other frameworks.

5.F.1 Image viewer

We provide a simple viewer for transient images based on Python and Matplotlib. The user
can scroll through time and adjust the intensity scale. A second view shows the transient
image integrated over the spatial domain. The resulting histogram illustrates how much
light arrived at what time, on either a linear and logarithmic scale. The viewer is shown in
Figure 5.10.
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(a) Time slices (b) Histogram

Figure 5.10: Our viewer shows time slices and histograms of transient images.
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Figure 5.11: The camera converter uses a homography defined by four points pairs to
resample a transient image.

5.F.2 Setup converter
Many setups seen in the real world have different illumination and viewing geometries. While
a change in laser spot position would require re-rendering the scene, other camera placings
and projections can be accommodated to make results more comparable. To this end, we
offer a resampling tool to convert transient images to different camera positions.

At the heart of the resampling is a homography as depicted in Figure 5.11. The user de-
fines the four point pairs in the old and new image from which the homography is computed.
Applying it to the image jointly crops, transforms and rescales the image. The user can also
specify a camera and laser position as three-dimensional coordinates which are used to com-
pute a temporal offset for each output pixel. Additional, the temporal window of the output
image can be changed. For the resampling, a Mitchell-Netravali filter with customizable size
for both spatial and temporal filtering is used. If no size is specified, reasonable filter sizes
are computed from the homography.

The tool is written in C++ with no external dependencies. It is implemented as command
line tool and thus ready for integration in batch processing.
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Figure 5.12: Transient image of the Hammer scene before (left) and after (right) applying the
noise model SPAD.
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Figure 5.13: Synthetic AMCW measurements of the Hammer scene. Left: Measured demod-
ulation functions from a PMDTec CamBoard nano AMCW camera. Middle/Right: The two
phase images (0◦ and 90◦) computed using the sensor model.

5.F.3 Fast back projection integration

All scripts that were used to export the transient images to the fast back projection solver
by Arellano et al. [AGJ17] are available on our website. This allows the user to set up a
complete reconstruction pipeline and re-evaluate all results in the paper.

5.F.4 Sensor models / noise

The suite of scripts and tools contains two noisy sensor models to reflect the characteristic
behavior of two important types of device: AMCW, a simple model of a correlation ToF sen-
sor (4-tap near-sinusoidally modulated correlation time-of-flight measurement with Skellam-
distributed shot noise) and SPAD, a single-photon counter with Poisson-distributed shot noise
and dark counts. Figure 5.12 shows an example data set before and after applying the SPAD
model with standard settings. Figure 5.13 shows images for the same scene as seen through
the AMCW sensor model.
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Figure 5.14: Reconstruction of the Stanford Dragon. The ground truth geometry is shown
in blue, while the reconstructed geometry is green.

5.G Reconstruction results
Our evaluation metrics aim to make different reconstruction algorithms comparable by re-
ducing their overall performance to a single number (that are shown in Table 5.7). However,
these error terms arise from various characteristics of the algorithm which are interesting
to study, as they increase the understanding of the behavior and point at possible improve-
ments. Thus we now discuss some characteristics of the back projection example used in the
paper. It should be noted that we did not tune parameters to achieve the highest possible
accuracy. Instead, these examples serve to illustrate the typical behavior of a reconstruction
algorithm.

5.G.1 Geometry reconstruction
Figure 5.14 shows the reconstruction of the Stanford Dragon model. The reconstruction
mainly consists of planar patches that are parallel to the wall which is very typical and
seen in almost all reconstructions. The Laplacian filter used after back projection to isolate
surfaces that favors flat structures and thus struggles with surfaces that are curved or not
aligned with the wall. The resulting reconstructions are often incomplete, low in detail, and
they feature a distinctive “cloud-of-pancakes” look.

5.G.2 Position tracking
Our naive tracking position implementation reconstructs first the object geometry and then
uses its center of mass as object position. Thus it is very vulnerable to incomplete geometry
reconstructions.

Figure 5.15 shows two frames of the AirplaneAxesPos data set, where the plane moves
along the X axis. Both reconstructions are incomplete and favor geometry close to the laser
spot, which lies in between both positions. When the center of masses are computed, the
movement of the object thus appears to be smaller than it actually is (see Figure 5.16). A
more sophisticated algorithm could be aware of this shortcoming and try to fit the given ob-
ject geometry into its reconstruction to determine which part of the plane was reconstructed.
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Figure 5.15: Reconstructed geometry as it is used during position tracking. The ground
truth geometry is shown in blue, while the reconstructed geometry is green. In different
frames, different parts of the plane were reconstructed, resulting in an error in the position
reconstruction.
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Figure 5.16: Reconstructed trajectory of the airplane for the movement along the X axis.
Apart from the offset in Z direction, the reconstructed path is too short.
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CHAPTER 6

A Calibration Scheme for
Non-Line-of-Sight Imaging Setups

This chapter was published as a peer-reviewed paper in the Optics Express journal by the
Optical Society in 2020 [Kle+20].
The authors are Jonathan Klein, Martin Laurenzis, Matthias B. Hullin, and Julian Isering-
hausen.

The recent years have given rise to a large number of techniques for “looking around
corners”, i.e., for reconstructing or tracking occluded objects from indirect light reflections
off a wall. While the direct view of cameras is routinely calibrated in computer vision appli-
cations, the calibration of non-line-of-sight setups has so far relied on manual measurement
of the most important dimensions (device positions, wall position and orientation, etc.). In
this paper, we propose a method for calibrating time-of-flight-based non-line-of-sight imag-
ing systems that relies on mirrors as known targets. A roughly determined initialization is
refined in order to optimize for spatio-temporal consistency. Our system is general enough
to be applicable to a variety of sensing scenarios ranging from single sources/detectors via
scanning arrangements to large-scale arrays. It is robust towards bad initialization and the
achieved accuracy is proportional to the depth resolution of the camera system.

6.1 Introduction
The ability to “see” beyond the direct line of sight forms not only an intriguing academic
problem but also has possible future applications ranging from emergency situations, where
situational awareness about dangers and victims is key, to scientific scenarios, where micro-
scopes supporting such techniques reveal hidden structures.

The recent years have produced a number of techniques that sense objects located “around
a corner” by recording time-resolved optical impulse responses, where light that bounces off
a directly visible wall enters the occluded part of the scene and thus gathers information
about hidden objects; see Figure 6.1a for a schematic illustration. The available operation
modes [Vel+12; Kir+09; Hei+19; OLW18; Gar+15; IH20] support not only object detection
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Figure 6.1: (a) We propose a novel method for the geometric calibration of three-bounce
non-line-of-sight setups using transient imaging hardware. Light travels from a laser SL to
a laser spot l located on the diffuse reflector wall. From there, it is reflected towards a
calibration target m and back to a projected camera pixel c, finally reaching the camera SC .
We calibrate the setup using multiple images of a specular, planar mirror in different positions
and orientations, analog to the procedure in classical two-dimensional camera calibration.
Instead of relying on known features on the calibration target, we use the time of flight
of the full path from laser to camera to solve for the individual laser spot positions l and
projected camera pixels c. (b) The optimization problem is non-convex but has very low
initialization requirements (e.g. eyeballing). (c) Even in the presence of time-of-flight noise,
our method reconstructs the setup geometry up to a very high precision. The ground truth
values (shown in red and green) are barely visible under the reconstruction.

and tracking of components of the occluded scene but extend to the full reconstruction of
three-dimensional shape and texture. In general it is assumed that the entire geometry of
the setup is known and only the hidden object is to be reconstructed. This implies that the
capture must be preceded by a manual calibration: Positions and distances of devices and
objects have to be measured with high accuracy, a task which is tedious and often results in
imprecise results.

Here, we propose an automatic system for calibrating the geometry of non-line-of-sight
sensing setups. Our scheme does not require any additional hardware other than a common,
planar mirror which serves as the calibration target. As in traditional camera calibration,
the target is recorded in different positions and orientations. Since the calibration scheme
does not rely on the target being textured, and since only a temporal onset (rather than
the full time-of-flight histogram) is used, our calibration scheme can be employed for all
types of ultrafast sensors, including single-pixel sensing scenarios [Mus+19], randomly scat-
tered measurement locations [But+15] as well as low-resolution imagers and even correlation
time-of-flight sensors [Hei+14]. Additionally, task-specific constraints (e.g., pixel positions
restricted to a scan line) are easily integrated in the method.

Our calibration scheme requires an initialization to warm-start the non-linear optimiza-
tion problem. In contrast to a laborious measurement however, we rely only on a rough
estimate of the setup’s geometry: As long as the initial solution coarsely reflects the di-
mensions of the scene geometry, the method is robust even in the presence of time-of-flight
noise.

Using an experimental measurement setup, we demonstrate that our scheme not only
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recovers relevant parameters to high accuracy, but that it also improves the outcome of
non-line-of-sight (NLoS) reconstructions obtained using data from the setup.

6.2 Related work
The last decade gave rise to a comprehensive body of work on non-line-of-sight sensing, i.e.,
the estimation of targets hidden from direct view by means of light undergoing indirect diffuse
scattering off directly visible proxy objects. While various lines of research are exploring the
use of steady-state measurements in order to extend the direct line of sight [KSS12; Kle+16;
Bou+17; Thr+18; Sei+19; Che+19], the majority of works remains focused on the use of
time-resolved measurements (transient images).

A survey by Jarabo et al. provides a good overview of transient imaging [Jar+17]. Sem-
inal works include the recovery of low-parameter geometry and reflectance models from
transient measurements [Kir+09; Nai+11] as well as the first reconstruction of distinct
shapes [Vel+12]. Since then, significant effort has been devoted to unlock novel sensor
technologies and interferometric setups for transient imaging [Hei+13; Gar+15; Gki+15]
while simultaneously improving the performance of the de-facto standard reconstruction
technique, ellipsoidal error back projection [Vel+12; LV14; AGJ17]. Recent additions to
the non-line-of-sight reconstruction problem include the introduction of the confocal capture
setting [OLW18] as well as attempts to cast the problem into paradigms borrowed from wave
optics and seismic tomography [Liu+19; LWO19]. While most of these works rely on vol-
umetric representations for the hidden target, other researchers have explored alternative,
surface-driven representations as well [Ped+17; IH20; TSG19]. These models typically lead
to improved consistency of the solution with respect to a physically-based forward simulation
of light transport, and they also naturally express effects like surface reflectance (BRDFs) or
self-occlusion. Equipping volumetric representations with such surface-based characteristics
to “guide” the reconstruction is possible, but comes at greatly increased implementation
effort and computational cost [Hei+14; Hei+19]. Lately, there has also been some work in-
troducing machine learning algorithms to NLoS reconstructions [Cho+20; Met+20; Che+19;
Car+18].

While details on setup calibration are often omitted in publications and the setup ge-
ometry is just assumed to be known, the reported calibration methods can be grouped in
several categories. Instead of completely manual measurements (e.g. [Gar+15; Kle+16]),
extending the setup by dedicated calibration hardware is a common approach. Buttafava et
al. uses a web cam to estimate the three-dimensional position of the visible laser spot, how-
ever the webcam itself is manually calibrated using a dot pattern [But+15]. La Manna et al.
demonstrate NLoS reconstruction using a moving curtain as relay surface which is scanned
by an additional SPAD camera to achieve real-time calibration [La +20]. Co-axial setups
(where the position of the laser spot always coincides with the current camera pixel position)
usually use precise galvometers, which provide accurate angle information. Together with
the ability to measure the time-of-flight of the first reflection, the position of the currently
observed point can directly be computed [OLW18; LWO19]. Speckle correlation based ap-
proaches (e.g. [KSS12; Met+20]) reconstruct the scene from non-transient measurements of
a speckle pattern on the reflector wall and thus do not rely on a geometric calibration in the
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same way as transient approaches do. Machine-learning based methods that are trained on a
static setup implicitly learn the setup geometry and are inherently calibration-free [Car+18;
Cho+20]. However, a such trained network cannot be transferred to new setups.

6.3 Method
A non-line-of-sight setup can be viewed as a high-dimensional function that maps parameters
such as the setup geometry, the hidden object, reflective properties of various components,
a background signal, the sensor model of the camera, and others to measurements. We
distinguish radiometric parameters (that govern the amount of light being transported) and
spatio-temporal parameters (that govern the time of flight). A first abstraction step drops
camera and laser peculiarities and describes measurements as transient histograms, i.e., the
time-resolved (on a pico- to nanosecond scale) intensity of light arriving at each sensor pixel.
Commonly all participating reflectance functions (BRDF) are assumed to be Lambertian
(with notable exceptions such as NLoS BRDF reconstruction [Nai+11] or retro-reflective
objects [OLW18]), and scenes are set up to minimize reflections from the background. With
these assumptions only the scene geometry and the hidden object remain unknown.

With scene geometry measurements available, an analysis-by-synthesis approach can be
employed to reconstruct the hidden geometry [IH20; Kle+16]. A setup calibration can be
attempted in a similar fashion: Given a known hidden object (i.e. information like position,
shape, size, and reflective properties that are required to compute light transport are known)
the setup is inferred from measured transient data. The hidden object can be chosen freely
(e.g. for diffuse objects a image formation model as presented in [Kle+16] could be used)
but we propose to use simple planar mirrors, as available as common household object. As
we will show in the following, this choice significantly simplifies the image formation model.
This then leads to an easier-to-solve optimization problem (compared to general diffuse
objects) that has far weaker requirements on its initialization due to its implicit constraints.
Our approach jointly optimizes for setup geometry and mirror placement, which allows for
a setup calibration with little manual measurements (that can be performed with reduced
accuracy to acquire only a rough estimate) for initialization.

The mirrors can be placed in the visible and hidden part of the scene. Thus access to
the hidden part is not strictly required, however it can lead to more robust calibration, if it
is accessible.

6.3.1 Image formation model
Figure 6.1a gives a schematic illustration of an NLoS calibration setup: a sensor / laser
light source setup on the left hand side which is separated from the mirror calibration target
by an occluder. We denote the physical position of the camera and the laser with SC and
SL respectively. As they are usually close to each other we define the shorthand notation
S = {SC , SL}. In the classic three-bounce setup the signal is reflected from a planar wall.
We denote the projected camera pixels on this wall with c ∈ C and the (potentially multiple)
laser spots with l ∈ L. The mirrors that replace the hidden object in our setup are denoted
with m ∈ M .
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Figure 6.2: To assess the optical path l → mr → c, we use a similarity relation: The laser
spot l illuminates the wall as if it was reflected on the mirror plane, resulting in a virtual
light spot l′.

Whether the pixels lie on a fixed grid (as for two-dimensional image sensors), a single line
(as for streak cameras) or are placed arbitrarily on the wall (as for scans with single-pixel
detectors) matters only insomuch as that some cases allow for specialized parameterizations
that can improve calibrations (see Section 6.3.3). Due to Helmholtz reciprocity the roles of
L and C are always interchangeable in the following discussion. Most common NLoS setups
assume that all l ∈ L and c ∈ C lie on the same plane, which is the case for a planar wall.
However, our method is also applicable for general three-dimensional points, which allows
us to cover a wide variety of NLoS setups such as curved walls, or walls that are rough (in
the scale of the hardware’s temporal resolution).

Hidden objects have usually a complex shape and thus interreflections have to be taken
into account. In contrast, the specular reflections on the mirrors we use as calibration targets
allow for only a single, unique optical path l → m → c, connecting laser spot, mirror and
projected pixel. Compared to classical transient rendering this means that no integration
over the surface of the object is required, which allows for fast and noise-free computation.
Our transient histograms only contain a single, sharp peak. We assume that those peaks
can be retrieved in a hardware-specific pre-calibration step that handles effects such as
background radiation or higher-order bounces (see Appendix 6.A.1).

A complete measurement consists of a series of paths Pi,j,k = SL → li → mj → ck →
SC (we omit indices in unambiguous cases). We assume that those paths are measured
individually (i.e. using only one mirror and illuminating only one laser spot at a time).

Each path is characterized by a time of flight and an intensity. The intensity depends on
the BRDF of the diffuse wall and its normal vector, while the time of flight is independent
of both. For our calibration we only rely on the time of flight. We thus neither need to
assume nor to estimate any BRDFs or wall normals (however, the wall’s surface normal can
be estimated using the reconstructed three-dimensional positions of laser spots and camera
pixels).

For the time of flight computation we need to compute the length of a path SL → l →
m → c → SC . Note that m is a plane while SL, SC , l, and c are points. Due to the
specularity constraint of the mirror reflection there exists a unique point mr on m at which
the light is reflected. The length of the sub path l → mr → c is equal to the path length
l′ → c, where l′ is the point l mirrored at m (see Figure 6.2).

A mirror plane is represented in the Hesse normal form as normal vector n and scalar
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offset d. Then
l′ = l − 2(n · l + d)n (6.1)

and the total path length is the sum of all path segments,

f (S, l, c,m) = ∥l − SL∥+ ∥c− l′∥+ ∥SC − c∥ . (6.2)

While mathematical planes are infinite, real mirrors are usually not. If mr does not lie on
the physical mirror plane, c will not receive any signal (see Figure 6.2). In this case, the
path can simply be removed from the optimization (see Section 6.3.2).

6.3.2 Calibration
We optimize our scene setup model by minimizing the temporal differences between time-of-
flight measurements t from the real setup and time-of-flight values computed from the current
estimate of the setup. If all possible light paths are used there are a total of #L ·#M ·#C

measurements. We solve

argmin
S,L,C,M

∑
l∈L

∑
c∈C

∑
m∈M

∥f (S, l, c,m)− tl,c,m∥2 . (6.3)

using a standard gradient descent algorithm (BFGS [TQ04]).
A calibration is only unique up to a rigid transformation of the whole setup since a

rigid transformation does not change any path lengths. We can therefore define the camera
location SC as the origin of the coordinate system and determine all other points relative to
it. In general we consider the offset between the camera location SC and the laser location
SL as a known feature of the hardware setup. Relative to the distance to the wall, the offset
between SC and SL is usually small. In these cases the angle between SC and SL viewed
from any c or l is marginal and the dominant factor is the total distance from the hardware
to the wall.

The initialization is further discussed in Section 6.4. Due to the compact image formation
model automatic differentiation can be used for gradient computation.

6.3.3 Parameterization
In Equation 6.3, we have l, c ∈ R3 and m ∈ R4 (represented in Hesse normal form). From
this general case, specialized parameterizations g : p → (S, L, C,M) can be derived. We im-
plement two such parameterizations for common special cases. A suitable parameterization
can decrease the degrees of freedom of the optimization (making it faster and more robust)
and enforce certain constraints on the solution.

Planar walls

Most current non-line-of-sight reconstruction approaches assume planar walls (with excep-
tions such as [LWO19; La +20]). After defining two basis vectors and an origin, each point
on a planar wall can be described by (u, v) ∈ R2. As a calibration is only unique up to a rigid
transformation we can define the wall plane as the X/Z plane. Then the only remaining
parameter of the wall plane is the offset to our origin S. As the mirrors reside outside the
plane, their parameterization remains unchanged.
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Figure 6.3: Setup used for the synthetic evaluation. The camera and laser are in the origin,
the red dots mark the laser spot positions. A total of 40 wall-facing mirrors (not shown
here) are placed between camera and wall.

Regular grids

On two-dimensional camera sensors the individual pixels are usually arranged on a regu-
lar grid. This grid is projected into the scene along the view direction leading to strong
constraints between the relative positions of the projected pixels. In the case of a planar
wall this projection can be fully characterized by a homography that maps homogeneous
two-dimensional coordinates of the image sensor to two-dimensional coordinates on the wall.
Since two-dimensional sensors usually contain hundreds or thousands of pixels, the reduction
of degrees of freedom to a constant of 9 (8 for the homography plus 1 for the distance of the
wall plane) is significant.

This parameterization can be further generalized by specifying a sensor pattern that is
projected onto the wall. Figure 6.10 shows an example of a pattern where some dead pixels
have been masked out. Such a pattern is assumed to be given and not part of the calibration
process.

6.4 Method evaluation
A setup is characterized by a number of different parameters, some of which are easier
to change than others. Fixed parameters include those defined by the hardware, e.g., the
resolution of the image sensor (the number of camera pixels) and the accuracy of the time-
of-flight information. Flexible parameters include the number of laser positions, the number
of mirror positions and the quality of the initialization. It is important to understand how
these parameters influence the calibration process to choose the best values in practical
applications.

6.4.1 Evaluation setup
Our standard evaluation setup (shown in Figure 6.3) consists of 25 camera pixels (arranged
in a 5 × 5 grid), 8 laser spot positions and 40 mirror positions. During the evaluation a
varying amount of the laser and mirror positions are used. The camera view frustum on the
wall is 2 × 2 units and 4 units away from the camera and laser. The laser spot positions
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are arranged around the view frustum while the mirrors are placed in front of the wall.
We use the default case of a planar wall for the majority of the evaluation. To mimic real
calibration situations, we apply varying levels of noise to the ground truth geometry to
resemble measurement uncertainties. This perturbed data is then used as the initialization
for the optimization process, which helps us to assess what level of accuracy is required to
successfully estimate the correct geometry. In particular, we apply measurement noise to
the setup geometry using

• Gaussian noise with standard deviation of σ to pixel and laser spot positions,

• Gaussian noise with standard deviation of σ/4 to mirror normals and renormalize
them,

• and Gaussian noise with standard deviation of σ to the mirror plane offsets.
It should be noted, that the noise level for positions is measured in distance units while the
noise level for normal vectors is measured in degrees, which makes them incomparable. The
factor of σ/4 is used here as it results in similar disturbances for both for this setup.

Similarly, Gaussian noise in various levels is applied to the reference time-of-flight values
t. Figure 6.1 shows the ground truth values along with an example initialization where
spatial noise with a standard deviation of σ = 0.5 was applied. At this noise level not much
of the original structure is preserved.

We characterize the quality of a calibration by the root-mean-square (RMS) error between
the individual components. Mirror positions are not considered part of the calibration result
and thus excluded from the metric. For two setups P = {S1, l ∈ L1, c ∈ C1} and Q =

{S2, l ∈ L2, c ∈ C2} (e.g. a ground truth setup and a calibration result) we compute

RMS(P,Q) =

√√√√ 1

n

n∑
i=1

∥Pi −Qi∥22. (6.4)

As mentioned before, the calibrated setup might be in a different coordinate system and
naively applying Equation 6.4 can result in high errors even for actually good result. There-
fore we use the Kabsch algorithm [Kab76] to determine an optimal rigid transformation that
transforms a setup onto a reference, after which the RMS becomes meaningful. Since the
RMS error has the same unit as the initialization noise σ, the two can directly be set into
relation. For instance, the example in Figure 6.1 uses 4 mirror positions and time-of-flight
noise with a standard deviation of 0.02 was applied. It achieves a reconstruction error of
0.042 scene units.

6.4.2 Required measurements
For a robust optimization the ratio between the input and output dimensions is an important
measure. The number of input dimensions of the optimization problem is defined by the
amount of measurements (i.e., used paths), while the number of output dimensions depends
on the parameterization. For the fully connected case (where all possible connections between
lasers, mirrors and cameras are included) there are #L ·#M ·#C measurements (where the
# denotes the number of elements in a set, e.g. #M is the number of mirrors). The output
dimensions are:
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Figure 6.4: Calibration performance depending on the total number of measurements. Each
data point shows the mean of 100 individual optimizations. The numbers above the bars
show the number of mirrors used for that data point.

• Default: 3 ·#C + 3 ·#L+ 4 ·#M ,

• Planar: 2 ·#C + 2 ·#L+ 4 ·#M + 1,

• Grid: 2 ·#L+ 4 ·#M + 9.

The planar parameterization uses two-dimensional points on the wall plane but has the
wall distance as additional dimension. Similarly, the grid parameterization does not depend
on the number of camera pixels, instead it always has 9 additional dimensions (8 for the
homography plus 1 for the distance of the wall plane).

In Figure 6.4 we compare the total number of measurements to the reconstruction error.
To analyze the performance of different combinations of laser and mirror positions, we realize
the same number of measurements with different combinations. All optimizations use the
planar parameterization and are initialized with a noise level σ ∈ [0, 0.5] and a time-of-flight
noise level of 0.02.

The results show that the number of measurements alone says little about the structure
of the problem, the same number of measurements may lead to severely different errors
depending on the ratio between lasers and mirrors. As expected, the reconstruction improves
when more measurements are used. More interestingly, it is also beneficial to have about
as many laser positions as there are mirror positions: The more extreme the ratio between
laser and mirror positions is (for a constant number of total measurements), the worse the
results become. This is related to the fact, that the ratio between available measurements
and number of variables in the optimization is maximized for equal amounts of laser and
mirror positions. For practical applications, the reconstruction error should be close to or
below the depth resolution of the camera. We conclude that 32 measurements using at least
4 laser positions are a lower bound for a sufficiently accurate reconstruction.

Figure 6.5 shows the same data set as in Figure 6.4, but this time decoded in terms of its
dependence on the initialization error. We find that within generous bounds the initialization
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Figure 6.5: Reconstruction error for various levels of initialization noise. The data is the
same as shown in Figure 6.4, averaged over all laser/mirror combinations for a specific
number of measurements (shown in different colors / markers).

has no effect on the convergence of the optimization; the RMS error primarily depends on
the number of measurements involved.

Figure 6.6 shows the limits of the allowed initialization error. Even for high values
some optimization runs still converge to the correct result, but there are no guarantees and
it cannot be considered a safe initialization. Up to a certain threshold close to 1 units,
the distribution of reconstruction errors is strongly centered at low RMSE, indicating an
accurate result (note the log-log scale). Once this threshold is crossed, the optimization does
not converge anymore and exhibits a sudden drop in quality.

We can transfer these insights to form an important rule with respect to the calibration
of real setups: We cannot rely on arbitrary initialization values but indeed require a rough
knowledge of the geometry. Still, even a rough estimate is sufficient to yield a very accurate
calibration, which might not even require the use of measuring tapes and rulers.

Figure 6.7 shows the reconstruction error in dependency of the time-of-flight noise and
the parameterization. To generate the data the standard setup with 5 mirrors and 6 laser
positions is initialized with a random noise value between 0 and 0.5. We find that there is
an approximately linear relationship between the uncertainty of the time-of-flight data and
the reconstruction error.

The default parameterization supports arbitrarily shaped walls such as the curved wall
shown in Figure 6.8.

Our main findings of this analysis is that for a sufficient amount of measurements, a
wide area of safe initialization exists. For optimal results, an equal amount of laser points
and mirrors should be used, equally distributed in the scene (but not in a symmetric pat-
tern, which would yield equal values for some measurements). If a setup uses only a single
camera pixel or a single laser position for object reconstruction, calibration results can be
improved by adding additional camera/laser positions for the calibration and later discard
the calibration results of these additional points.

Additional evaluations of the impact of the setup geometry can be found in Appendix 6.C.
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Figure 6.6: Reconstruction success depending on initialization noise. Time-of-flight noise
is fixed at 0.02. The blue distribution of the individual optimization results gives an better
intuition than the orange mean value - the results split in two distinct clusters for increased
noise. Note that both axes are in log scale.
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Figure 6.7: Calibration error depending on the time-of-flight noise and parameterization.
The r-values show the slope of a linear fit for each parameterization.
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Figure 6.8: Example calibration of a curved wall. The setup consists of 6 lasers and 6
mirrors, the initialization noise is 0.5, the time-of-flight noise is 0.1. The RMS error of the
calibration is 0.099.

6.4.3 Implementation and runtime

In our prototype Equation 6.3 is implemented purely in Python, the optimization of Equa-
tion 6.3 is performed using the BFGS algorithm from the scipy.optimize package with
gradients compute by autograd. On typical setups, the optimization runs for about 2 min-
utes on desktop hardware, with unoptimized code.

For large calibration problems with a high number of laser and camera positions, the
number of unknowns can be significantly reduced when the planar or grid parameteriza-
tion is used. For such highly overdetermined problems a significant amount of connections
(laser→mirror→camera paths) can be omitted as additional equations in the optimization
problem to improve performance.

6.5 Experimental results

We evaluate the performance of our calibration procedure in a NLoS experiment, and ex-
amine the impact of calibration on NLoS reconstruction. In addition to measured data we
also use significantly less noisy synthetic time-of-flight data to repeat the evaluation on the
same setup geometry in order to emulate additional capture hardware.

The setup is shown in Figure 6.9. It uses a total of 7 different laser spot and 7 mirror
positions (as described in Section 6.4.2 this ratio is efficient), and 26 × 29 camera pixels.
The pixels are arranged in a regular layout which enables the use of the grid parameter-
ization. The reflector wall is 6.6 m away from the camera, the field-of-view on the wall
measures 1.35 m × 1.35 m. The reconstruction target is a house shape which measures
69.5 cm × 54 cm. The mirror measures 80 cm × 100 cm.

The ground truth setup geometry that is used for the evaluation is obtained by manually
measuring the position of each mirror, laser spot, camera view frustum corner, and the
position of the hidden object using a measuring tape. The shape of the house is given by
the SVG file from which it was manufactured.
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Figure 6.9: Photograph and schematic of our experimental setup. The reconstruction target
is a house shape outside the field-of-view of the camera. The red spots on the wall show the
7 laser spot positions that are used.

6.5.1 Calibration results

Our hardware setup consists of a Princeton Lightwave InGaAs Geiger-mode avalanche photo-
diode camera and a Keopsys pulsed Er-doped fiber laser. The camera has a spatial resolution
of 32 × 32 pixels; however, some pixels are defective, which reduces the effective resolution
to 26 × 29 pixels. The temporal bin width is 250 ps (7.495 cm at the speed of light) and
each measurement consists of 200,000 individual binary frames captured in about 4 seconds.
The laser emits light at a wavelength of 1.55 µm and has a pulse length of 500 ps. The tran-
sient histograms retrieved from the camera are converted into discrete time-of-flight values
by fitting a Gaussian function to the main peak (see Appendix 6.A.1). The house shape is
made of white-painted plywood.

We measure the camera’s field of view using a moving marker on the wall and observing
it in the cameras live image (where the pixel size projected onto the wall is 4.2 cm × 4.2 cm).
The 7 spot positions of the near-infrared laser were measured using an IR detector card. We
estimate that these measurements are accurate up to 1–2 cm, which should be considered
when interpreting the calibration results. The signal offset between camera and laser (which
results in a time-of-flight offset) is calibrated by placing a planar calibration target in front
of the setup at several known distances. A household-grade mirror is mounted on a tripod
which we place at 7 different locations in the scene. The mirror planes were initialized by
measuring the position of the tripod over the floor and assuming that the plane normal
faces towards the geometric mean of the camera and laser points. Although being a rough
estimate, this approach proved sufficient.

Measurements are also affected by scattering (e.g. when the laser spot is close to the
view frustum or the laser beam crosses it and hits tiny particles in the air) resulting in
invalid values. As our proposed method uses a flexible list of l → m → c paths, we can
automatically detect and remove invalid paths from the optimization (see Appendix 6.A.2
for details on the detection).

Figure 6.10 shows the calibration results. We evaluate a series of different initialization
noise values (see Section 6.4.1), namely 10, 20, 35, and 50 cm. For each noise level, two
different initializations are shown. Note that since the grid parameterization is used, noise
is applied to the corners of the view frustum instead of individual pixels (since their layout
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Figure 6.10: Calibration quality on the experimental setup. Left: The RMS is computed
according to Equation 6.4. For each noise level, two initializations are created which are
shared by the evaluations on both the measured and synthetic time-of-flight data. The gray
lines show the 0.5 cm and 5 cm error. Right: Comparison between a typical calibration result
and measured positions on measured time-of-flight data for an initialization noise of 35 cm.
The RMS is 3.27 cm. Some rows and columns with dead pixels were removed, resulting in
visible gaps.

is given by the sensor pattern). In real applications, the worst case (σ = 50 cm) would
correspond to a rough initialization obtained with just a sense of proportion and without
any measuring devices.

As seen in the previous evaluation, the calibration usually either converges to a good
solution or not at all. For successful calibrations we achieve a typical RMS error of 3–
4 cm on this setup. Considering the poor temporal resolution of the setup, these results are
consistent with our findings in Section 6.4.

Additional to the measured time-of-flight data we also use synthetic data representing a
more advanced hardware setup. This data is created using the same model as in the inverse
optimization. We use identical conditions including removing the same pixels and using the
same subset of connections as for the real measurements. We apply noise to the time-of-flight
data as described in Section 6.4 with σ = 0.5 cm. The results are shown in Figure 6.10. As
expected from the significantly lower noise level, the calibration results are about an order
of magnitude better than for the measured data.

6.5.2 Reconstruction results
For object reconstruction, we use the phaser-field back projection algorithm described in Liu
et al. [Liu+19]. Since properties like the resolution, the noise level, and general intensity
vary between the measured and synthetic data, the reconstruction parameters must be fine-
tuned individually (in Figure 6.11 parameters are different for each row, but constant within
a row). Details about the reconstruction parameters are found in Appendix 6.B.

The synthetic time-of-flight data for the reconstruction cannot be computed with the
same approach as for the synthetic calibration since the scene now contains a diffuse ob-
ject. Therefore we use the transient renderer presented by Iseringhausen et al. [IH20] which
computes the required transient histograms. We set the binning to 0.5 cm, similar to the
time-of-flight noise of the synthetic calibration. Additionally we apply shot noise to the tran-
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Figure 6.11: Object reconstructions obtained from different setups: Initialization: the
ground truth setup perturbed with a noise level σ = 10 cm, Calibrated: the setup obtained
by the presented calibration method, G.T.: the ground truth / measured setup. Note that in
both cases the calibrated reconstruction closely resembles the ground truth reconstruction,
which implies that the calibration was successful.

sient histograms using a Poisson distribution (where the maximal transient pixel intensity
is around 1500).

For a quantitative evaluation we use the NLoS mesh distance metric introduced by Klein
et al. [Kle+18]. It computes the precision (minimal distance to the reference from each
point of the reconstruction) and completeness (minimal distance to the reconstruction from
each point of the reference) of the reconstruction. Note that in this metric a reconstruction
consisting of a single point on the reference surface would have perfect precision but bad
completeness score, while a reconstruction consisting of all possible points would have perfect
completeness but bad precision score. Thus, there is in some sense a trade-off between both
scores which is why the maximum is taken as combined score.

The results are shown in Figure 6.12, while Figure 6.11 shows reconstruction renderings
as qualitative comparison. We evaluate only a calibration with 10 cm initialization noise, as
all converged calibrations have essentially the same quality (see Figure 6.10). In this case the
initial setup (before calibration) can be interpreted as a previously measured setup geometry
that is improved through calibration rather than a coarse initialization (which would be
obviously unsuitable for any reconstructions) for a first-time setup geometry estimation.

We make the following observations:

• As expected, the higher temporal resolution and lower noise levels of the synthetic case
leads to significantly improved reconstruction results.

• Even for the experimental data where the house shape is not easily recognizable in the
reconstructed shape, the shape from the calibrated setup looks much more similar to
the shape from the hand measured (ground truth) setup than to the shape from the
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Figure 6.12: Bi-directional distance between reconstructions and reference obtained from
different setups: Initialization: the ground truth setup perturbed with a noise level σ = 10

cm, Calibrated: the setup obtained by the presented calibration method, G.T.: the ground
truth / measured setup. Smaller values are better, the combined score is the maximum of
both (here always the precision). After the calibration, the combined distance is significantly
lower.

initialization setup. This shows that the calibration itself works well, even when the
house shape cannot be properly reconstructed.

• Thus, setup calibration is less sensitive to noise than object reconstruction.

• On experimental data, the calibrated setup actually leads to slightly better reconstruc-
tions than the hand-measured ground truth setup. As described in Section 6.5.1 the
measured setup has some uncertainties which could be corrected by the calibration
(similar to how the initial setup is improved), but the improvement is also close to the
general noise level.

6.6 Conclusion
Our proposed method for non-line-of-sight setup calibration is demonstrated to robustly
optimize real-world setups. Despite being a non-convex problem we show that a generous
convergence basin exists around the global minimum which results in low requirements of
the initialization. While completely arbitrary initialization is not sufficient, a rough esti-
mate that does not necessarily rely on the use of measuring tapes and rulers is sufficient for
good results. Additionally, roughly the same number of laser points and mirror positions
should be used. The achieved accuracy depends on the depth resolution of the setup, but
setup specific parameterizations can be used to enforce constraints and increase the accu-
racy. As the mirror target results in a single sharp peak in the signal, we do not rely on
hardware being able to record full transient histograms. This makes our method applicable
on a wide variety of hardware including amplitude-modulated continuous-wave lidars. The
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ability to calibrate also non-planar walls could enable non-line-of-sight imaging applications
in everyday situations.

There are various ways in which our method could be extended in future work. When
multiple mirrors are placed in the scene at the same time instead of being measured one-
by-one, the mapping between measured peaks and physical mirrors becomes and additional
optimization problem. Solving this would allow for faster calibrations.

Although the calibration problem could be reformulated and extended to better support
co-axial setups, this might not be worth the effort, since co-axial setups are in general easier
to calibrate (see Section 6.2).

Additionally the mirror that acts as calibration target could be augmented with a cali-
bration pattern that is then projected onto the wall. This would allow to capture additional
information which could possibly be used to improve results. Similarly, including also the
intensity of paths could allow to formulate additional constraints on the wall normal.

Supplemental material

6.A Importing SPAD data
As our proposed method works purely on time-of-flight data, each hardware setup requires a
pre-processing step to convert sensor data to time-of-flight values. In the following we detail
this process for the hardware used in the evaluation in Section 5.

6.A.1 Distance extraction
For our measurements we use a PrincetonLightwave InGaAs Geiger-mode avalanche photodi-
ode camera where each pixel contains a counter that stops when the first photon is detected.
By varying the diode voltage the probability of a photon detection can be controlled and
a full transient histogram can be recorded. As the existence of early photons reduces the
probability of the detection of later photons, these histograms do not directly correspond to
light intensities. However, since our method uses only time-of-flight values and no intensity
vales, this effect can safely be ignored.

The pixel counters are synchronized with the laser pulse, but setup-specific features such
as cable length between the two devices require an offset calibration. We perform this by
placing a flat calibration target at 3 known positions in front of the setup and fitting the
offset of a linear function (the gradient is known through the bin width) to the measurements.

Figure 6.13 shows an example of a pixel histogram. Due to the close proximity of the laser
spot to the camera view frustum the histogram contains lens flare artifacts which manifest
as a peak at the distance of the wall to the setup. The second peak in the histogram is light
reflected by the mirror, our actual signal. The peak shape is widened by the pulse duration
of the laser.

To extract the location of the return with sub-bin resolution, we fit a Gaussian function
to the data. Despite this procedure, the overall accuracy is still limited by the camera
noise. We employ an iterative scheme, where peaks are located using the Python package
scipy.optimize and subtracted from the data to find additional peaks in the next iteration.
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Figure 6.13: Histogram recorded by a single camera pixel. Both scales show the same
data. The two peaks are well visible in the linear scale (orange). Scattering in the scene
produces some background noise after the primary peak, which is visible in the logarithmic
scale (blue).
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Figure 6.14: (a) A SPAD measurement integrated over time. Some rows in the lower middle
and some columns on the right contain invalid data and should be removed. (b) Invalid rows
and columns are removed (hence the reduced spatial extent of 29×26 pixels), but some pixels
are still invalid. (c) Result after filtering.

Finally, the fractional bin numbers of the peak locations are converted to time-of-flight values
by applying the linear mapping determined in the offset calibration.

Unfortunately some rows and columns in our sensor are broken and contain invalid values.
Figure 6.14a shows a raw image of the camera, integrated over time. The dead rows and
columns are removed before further processing. In addition to the dead rows in the middle,
the first two rows are removed as well, as they contain a single invalid pixel each. This leads
to the pixel mask seen in the main paper in Figure 10.

6.A.2 Selecting valid measurements
Apart from the dead pixels most measurements contain additional invalid pixels. The most
common cause is that the reflection from the mirror does not cover the whole camera view
frustum. We therefore compute a valid pixel mask for each measurement and reject each
pixel marked as invalid.

The peak detection finds the highest peak first, so the peaks are sorted by their time
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delay. The first peak is then the direct reflection while the second peak is our actual signal
which is later used for the calibration. Valid pixels are all pixels which fulfill all of the
following criteria:

• The relative amplitude of the peaks should not differ by more than 20%. As the
absolute intensity can vary drastically for pixels of the same measurement, an criterion
on absolute peak amplitudes is less robust.

• The signal peak is at most 20 bins wide. If there are no clear two peak in the signal,
the fitting can return a degenerated peak that is extremely wide.

• The first peak is approximately at the distance of the wall (620 bins). We expect a
direct reflection from the wall and thus verify it. Note that this test is related to our
hardware setup and not the calibration method itself. Knowledge of the wall position
is not required for calibration.

• The second peak should have a minimum distance to the first peak (15 bins). This
ensures that two actually distinct peaks are detected.

These criteria are rather conservative but robustly remove any outliers. Figure 6.14 shows
the results on a measurement where the mirror reflection did only cover the left part of the
view frustum. The mask successfully removes all invalid pixels on the right, however some
probably good pixels in the top left are also removed. Since we only aim to reconstruct the
overall sensor projection and not individual pixel positions, these holes don’t significantly
influence the end result.

6.B Object reconstruction
We reconstruct the hidden objects in Section 6.5.2 using the phasor-field virtual wave optics
algorithm by Liu et al. [Liu+19]. The parameters for the object reconstructions are kept as
similar as possible, however the different data sources necessitate some parameter changes.

Due to the lower temporal resolution of the experimental data, a lower wave number
is used, which smooths out some noise artifacts without removing true geometry features
(experimental: 3, synthetic: 11). Similarly, as the intensity values are different different
thresholds are used to convert the density cloud into a surface (experimental: 0.5, synthetic:
0.05).

In the SPAD sensor, early arriving photons can shadow the detection of later arriving
ones. For pixel-histograms with a strong first peak (see Figure 6.13), the second peak will
be lower, even if the same number of photons arrive. Since only distances and not intensities
are used for the calibration, this effect can be ignored, however for the back projection it is
advantageous to normalize the intensities of the secondary peak to equalize pixel importance.
Since in our setup all pixels are illuminated quite homogeneously, a simple normalization
approach yields good results.
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Figure 6.15: Calibration error with respect to the angle between camera and reflector wall.
Left: The time-of-flight noise is adjusted to the pixel size. Right: All pixels have the same
mean noise.

6.C Setup geometry
In the following we analyze the influence of the setup geometry on the calibration success.
Since in the most general case each laser position, camera pixel and mirror adds 3 degrees of
freedom, the effect of their placement is hard to evaluate exhaustively. Instead we evaluate
two particularly interesting cases, the influence of the angle between camera and wall and
constraining mirror placement to the visible part of the scene.

6.C.1 Camera angle
We further analyze the impact of the camera angle with respect to the reflector wall using
the synthetic setup as described in Section 6.4.1.

The camera position is rotated around the Z-axis with the rotation origin as the center
of the reflector wall (see Figure 6.3) in angles between 0◦ (view direction normal to the wall,
as in Figure 6.3) and 45◦ to the right. At each step the camera is oriented such that the
center pixel always faces the rotation center.

The projected pixel pattern on the wall is distorted by this rotation: Pixels on the right
side are squeezed together, while pixels on the left side are pulled apart. This changes
not only the pixel center positions, but also their projected area. To account for this, the
hardware agnostic model from Section 6.4.1 is extended by a pixel model that scales the time-
of-flight noise according to the pixel size. This noise scaling is set to the relative difference
between the distance of the projected center pixel to the camera and the distance of each
other projected pixel to the camera. In practice this means that for the 45◦ case the time-
of-flight noise for the most spread-out pixel is scaled by about 1.41, while the time-of-flight
noise for the most squeezed pixel is scaled by about 0.82.

For this evaluation a time-of-flight noise of 0.05 and an initialization noise of 0.2 is used.
The setup furthermore uses 8 lasers and 5 mirrors as well as the planar parameterization.

The results are shown in Figure 6.15. For each of the 10 steps 16 random instances
where calibrated. We find that the distortion from the camera rotation slightly worsens the
results, however the effect seems almost negligible. When the noise scaling is turned of, the
results have a similar pattern but have an overall lower RMS error (even for no rotation
the projected center pixel is the closest to the camera, thus the overall noise scale is >1).
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Figure 6.16: Calibration results for mirror placement constrained to the visible part of the
scene and mirror placement in the visible and hidden part of the scene. In both cases 6
mirrors are used.

Therefore the slight decrease of the RMS is caused mainly by the distorted pixel centers and
not just the additional noise from the increased pixel area.

6.C.2 Constrained mirror placement
In usage scenarios outside the laboratory the hidden scene might not be accessible. Therefore
we perform a comparison between a setup with mirrors only in the visible part of the scene
(defined here as having a positive X component in the coordinate system of Figure 6.3) and
a setup with free mirror placement.

The setup is based on the synthetic setup from Section 6.4.1. The time-of-flight noise is
set to 0.05, an initialization noise to 0.2. 8 laser positions and 6 mirrors are used; in the free
mirror placement case 3 are placed in the hidden part of the scene and 3 are placed in the
visible part of the scene. The camera is rotated by 30◦ (as described in Section 6.C.1) which
is usually required when an occluder is present in the scene. For both cases the calibration
was performed 16 times with different initializations.

The results are shown in Figure 6.16. We find that in this setup the resulting calibration
error is about 25% higher if only the visible part of the scene can be used for mirror placement.
We conclude that free mirror placement is an advantage but not a necessity for our method
to work.
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CHAPTER 7

Conclusion and outlook

NLoS imaging has advanced into a broad research field of global interest as becomes apparent
by the large number of publications in the recent years. The overview in Chapter 3 covers
only a fraction of them and more publications are expected to appear in the future. Clearly,
NLoS imaging is a vibrant topic with much anticipation from the industry. Our own impact
to the field is summarized as follows:

In Chapter 4 we developed a novel reconstruction approach that allows cheap real-time
object tracking for the first time. It was also the first NLoS reconstruction algorithm that
does not rely on transient images and we introduced analysis-by-synthesis as a reconstruction
modality. In Chapter 5 we presented a benchmark for NLoS imaging problems that includes
a reference data sets and domain specific evaluation metrics. With these, the multitude of
existing methods become comparable and the benchmark results can help to select the right
algorithm for newly designed products. In Chapter 6 we presented an universal calibration
approach that allows quicker setting up a NLoS imaging system in new environments and
makes them less constrained to laboratories. It works on a large variety of setups and does
not require additional hardware.

7.1 Impact, limitations, and future work
During the years in which this work was conducted the field of NLoS imaging progressed and
broadened substantially. Therefore we now give a brief overview of the impact, limitations,
and future work for each of our publications from the point of view of the current state of
the art.

The main limitations of our analysis-by-synthesis-based object tracking are a too sim-
plistic scene model, the reduced stability if orientation reconstruction is enabled, the need
for calibration, and the lack of strong convergence guarantees.

The need for calibration is shared with the majority of other publications, but it has been
addressed by our later work. While the evaluation in the published paper only shows results
for an intensity camera due to paper length restrictions, the tracking framework is largely
hardware-agnostic and can also process transient input data. This requires the forward
renderer to output time profiles which can be computed along with the intensity values
with little computational overhead. During the development we used this to successfully
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perform object tracking with an AMCW lidar in our laboratories. The temporal dimension
can be used as additional optimization constraint which in principal is beneficial for the
reconstruction quality, but overall the higher resolution and better signal-to-noise ratio of
the intensity camera led to superior results. For newer transient imaging hardware this
would likely not be the case and in addition our calibration method could be readily applied
to a setup using them.

With respect to the scene model a follow-up paper was published by our group [IH20]. It
includes occlusion in the forward model and uses an advanced Gaussian-isosurface-based op-
timization approach that is capable of full three-dimensional reconstruction and is especially
robust to noise.

As with most numerical optimization problems, guarantees to find the optimal solution
are extremely hard to achieve. Moreover the uniqueness of NLoS reconstructability has
not been proven in a mathematical rigorous way (i.e. the existence of an injective function
that maps scene descriptions to measurements for a given light transport model). Surfaces
facing away from the relay wall are usually regarded non-reconstructible, however this might
not hold true for light transport models involving higher order reflections. There has been
some studies on the type of measurements required to break symmetries [Ped+17] and some
general (albeit not mathematical rigorous) considerations on reconstructability [LBV19], but
further research is still required.

The main limitation of our benchmark is that it its current state the reference data set
does not include confocal transient images. As discussed in Section 3.1, this measurement
modality has become increasingly popular after our benchmark was published. Since some
reconstruction algorithms rely on confocal measurements, they can not be evaluated on our
current data sets.

One of the biggest challenges in the development of the benchmark was the unification
of different setups and scanning patterns. For meaningful comparison, different reconstruc-
tion algorithms should run on the same input data. This prevents the support of a large
number of scanning patterns since it would inherently split the evaluation results into many
subcategories. However, given the popularity of confocal scanning, providing the synthetic
renderings for two different scanning patterns would be well justified and enable the com-
parison of most of the existing approaches.

In addition, the data set should be extended to include more complex scenes to account
for the improved capabilities of newer reconstruction algorithms. Adding a background
signal or other types of noise would provide means to evaluate the out-of-lab performance
of different approaches. Similarly, more complex materials should be included, as in the
current state only one non-diffuse material is available. The scenes also contain only a single
object each which drastically lowers the amount of interreflections in the scene. In contrast
to additional scanning patterns, extending the variety of scenes would not lead to a split in
the evaluation but rather help the estimate the robustness of all algorithms.

Another problem is the lack of open-source implementations of published methods.
Therefore it would be beneficial to create a community driven repository that implements
various algorithms in a unified framework and makes them reusable for future research.

Given this limitations, our benchmark is not yet a reference on the performance of the
latest work. Nonetheless the data set provided has proven to be a valuable contribution to
the community and was used in publications such as Lindell et al. 2019 [LWO19]. The same
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is true for the evaluation metrics [Kle+20].
The main limitations of our calibration method are the number of mirrors required in

the scene and, to a lesser degree, the need for a rough initialization.
There are multiple ways in which this could be significantly improved on. So far, only

time values are considered in the optimization. Including the intensity values of the peaks as
an additional constraint would lead to a better conditioned optimization problem and likely
improve results. These intensity values would mostly depend on the distance of the mirror
(through the inverse-square law), which is already measured by the temporal measurements,
and the angle between the reflector wall and the mirror (through Lambert’s cosine law),
which adds valuable additional information.

Furthermore it would be possible to place multiple mirrors in the scene at the same time
instead of taking consecutive measurements. This would result in an additional combinato-
rial problem of deciding which peaks originated from which mirror as now multiple peaks
appear in each measurement. However, the number of total mirrors is still low and a rough
initialization does already exist.

Lastly, augmenting the mirrors with specialized tracking patterns (such as ChArUco
Corners [Gar+14]) would result in these patterns being projected onto the relay wall. If a
full-field image sensor is used, features of the markers could be detected in the measurements
which would reveal for each pixel, where it was reflected on the mirror plane. Since this
projection is a low-dimensional homography, only very few features would need to be detected
for this, which could make this approach suitable even for the relative low resolution of
today’s transient imaging hardware. When the projection is known, the position of the
mirror could be directly determined with simple geometric reasoning. With known mirror
positions, the optimization is more constrained and can be solved more robustly and faster.
Our method then would also most likely work with fewer mirror positions and even less
requirements for the initialization of camera and laser points (while mirror positions would
not need to be initialized at all).

7.2 Closing remarks
In this thesis, we presented a number of contributions to the filed of NLoS imaging. We
put a focus on solving practical problems and our work has been build upon in publications
of other groups. NLoS imaging is still an emerging technology and we are excited to see
the progress that will be achieved by future research and the release of commercial products
that result from it.
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