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Abstract

The rise of artificial intelligence (AI) and in particular modern machine
learning (ML) algorithms has been one of the most exciting developments
in agriculture within the last decade. While undisputedly powerful, their
main drawback remains the need for sufficient and diverse training data.
The collection of real datasets and their annotation are the main cost drivers
of ML developments, and while promising results on synthetically gener-
ated training data have been shown, their generation is not without diffi-
culties on their own. In this contribution, we present a paradigm for the
iterative, cost-efficient generation of synthetic training data. Its application
is demonstrated by developing a low-cost early disease detector for tomato
plants (Solanum lycopersicum) using synthetic training data. In particular,
a binary classifier is developed to distinguish between healthy and infected
tomato plants based on photographs taken by an unmanned aerial vehicle
(UAV) in a greenhouse complex. The classifier is trained by exclusively us-
ing synthetic images, whose generation process is iteratively refined to obtain
optimal performance. In contrast to other approaches that rely on a human
assessment of similarity between real and synthetic data, we instead intro-
duce a structured, quantitative approach. We find that our paradigm leads
to a more cost efficient development of ML-aided computer vision tasks in
agriculture.
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Data, Tomato Plants, Unmanned Aerial Vehicles.

1. Introduction

Agriculture globally is more challenged now than ever before, needing to
produce more food for a growing human population in the context of acceler-
ating climate change, resource scarcity, and loss of biodiversity. These chal-
lenges will require smart, adaptable, and cost-effective technologies, which
can maximize yields with minimal resource inputs. To this end, farmers are
replacing traditional management practices with highly automated systems.
High-tech greenhouses enable precise control of growing conditions, and com-
puterized combine harvesters remove most of the manual effort required in
the open field, significantly increasing yields per man-hour.

These advanced systems have made farmers increasingly reliant on infor-
mation and communication technology for management, including wireless
environmental monitoring and control systems, remote sensing via unmanned
aerial vehicles, and cloud-based farm management software. The usage of
these digital tools has produced large amounts of data that must be effi-
ciently processed, analyzed, and interpreted by the farmer. To address this
need, AI has emerged as an essential but still underutilized tool in modern
agriculture. Indeed, the practical integration of smart systems powered by
AI, and in particular by ML, will be essential to enable agriculture to be
maximally resource-use efficient (FAO22).

ML is a sub-field of AI which is based on fitting various models to train-
ing data and comprises algorithms such as decision trees, support vector ma-
chines, logistic regression, expectation maximization, and neural networks.
In the last ten years especially, neural networks have been tremendously
successful in applications like search algorithms, suggestion systems, transla-
tion between natural languages, text-to-speech synthesis, playing logic games
such as chess and Go, and a wide range of image analysis and generation
algorithms including optical character recognition, face recognition, image
segmentation, image style transfer and text-to-image synthesis. In all of
these cases, ML-based approaches have surpassed previous non-ML based
approaches. This was made possible by the availability of increasingly more
powerful hardware that enabled training so-called deep neural networks (deep
learning) on large datasets.

Apart from faster hardware, another factor contributing to the success
in ML has been the availability of large, annotated datasets. Backends of
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modern websites employ a wide range of tracking and clustering technologies
to find the most relevant advertisements for each individual visitor, smart
phones analyze billions of pictures and record the users movement, and sev-
eral aspect of every day life is in one form or another digitized. If neural
networks are considered as powerful rockets, data has to be considered as
their fuel.

1.1. The Hard Thing about ML

The goal of using deep neural networks is to obtain a model of a given
dataset (i.e., a representation of the data far more compact than the actual
amount of data). Consequently, successfully training a ML model requires
three components: (1) the right architecture (i.e., the right type of network
for the task and the right way to train it); (2) huge computational resources
(depending on the task, whole computer clusters running for several days);
and (3) an extensive amount of training data.

Thanks to the continuous research efforts and an active user commu-
nity 1, many problems (such as image classification or segmentation) have
established architectures that can be readily used. Although computation
costs can be high for certain projects, service providers exist that provide
those with a high flexibility. In practice the biggest remaining factor deter-
mining the final performance is the availability of sufficient training data.

Training data consists of examples of what the network should learn. For
an image classification task, the training dataset may contain a huge number
of images, each accompanied by its class. During training, the network learns
the relationship between input images and output classes, and is afterwards
capable of predicting a class for any given input image.

Collecting training data from the real world is very costly. Not only are
many images required, they also need to be diverse and should cover all the
variance that the network should learn. For example, if a network is trained
on photos taken outside in the summer, it may later perform very poorly
on pictures taken in the winter, where everything is covered in snow. As
another example, if an additional use case is added in a later stage (e.g.,
also operating during the night time), a large set of new images have to be
captured, making these adjustments very costly.

After collecting the data, the training data has to be labeled with ground

1See https://en.wikipedia.org/wiki/Kaggle .
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truth information. For some tasks this may be cheap (e.g., assigning the
correct class out of a selection of limited choices to each image), but it can
still require the work of an expensive expert that can correctly determine the
class. For other tasks, such as when pixel-precise segmentation masks should
be inferred, the labeling may get very expensive. For the popular Cityscapes
dataset widely used in autonomous driving, e.g., the labeling time required
for a single image by an expert ranges from 4 minutes up to 1.5 hours,
depending on the density of annotations (COR+16). In some cases, data
labeling can be outsourced to regions with less expensive labor costs (and
service providers like Zuru, Cogito Tech, or iMerit offer a smooth integration
of the process), but in several cases, (e.g., distinguishing between different
kind of diseases on plants), domain experts may be required for reliable
results and outsourcing becomes infeasible. To some degree, labeling can be
speed up through specialized tools (e.g., LabelBox ), however, these can only
mitigate the cost. Even if costs can be halved, this does not change their
order of magnitude.

The most promising candidate for overcoming the excessive cost of ob-
taining training data is the usage of synthetic training data: instead of taking
photos and labeling them manually, a virtual scene is automatically gener-
ated by a computer program and then rendered into a photorealistic image.
The correct label is known from the generation process and requires no ad-
ditional work while being a hundred percent correct. In contrast, manually
labeled data almost always includes mistakes caused by human error; gen-
erating the labels in the least amount of time using automated strategies
sacrifices accuracy.

Here, the research field of computer graphics (CG) comes into play, which
researched over the last decades the generation of synthetic renderings in-
cluding realistic interaction between light and objects (HVDMG+13). Using
these algorithms, it is possible to generate images that cannot be distin-
guished from real photographs by humans any more. Using parameterized
models, an infinite amount of different images can be created without addi-
tional human work. In the simplest case, the selection and position of objects
in the scene is randomized, but in general every aspect of an object can be
randomly changed while maintaining realistic results.

Plant modeling has a long history in the CG community. Their recursive
structure often maps well to recursive algorithm such as L(indenmayer)-
systems (PCFH18) and the elegance of their implementation makes them a
very common topic in many introductory computer science lectures (PL90).
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Individual plants have been simulated with biological precision to study dif-
ferent phenomena, such as the influence of the canopy to light levels (CNK14).
On a larger scale, the interaction between large collection of plants and the
environment they grow in has been addressed as well (MCLA+17; MHS+19).

In the early years of neural networks, convolutional layers inspired by
biological processes where used to classify images of digits (Fuk80). The skip
connections in the common U-Net, a fully convolutional network architecture,
were initially used to segment biomedical images (RFB15). Region-based
convolutional neural networks (R-CNN) were a breakthrough in instance
segmentation and have been trained for general datasets (GDDM14).

Creating powerful parametric models is an expensive task in itself. But
their true power is shown when a scene is adjusted for different scenarios.
Modeling four different crops at day and night and in summer and winter
requires 8 different models but allows for the generation of 16 different com-
binations. Thus, the cost for increasing the diversity in the training set grows
only linearly rather than exponentially.

One way to increase the realism of synthetic renderings is to compute
full global light transport using ray tracing. However, this can immensely
increase the computational power required, which directly translates to added
costs in hardware and power. In practice, rendering farms can be rented
which support parallel rendering on thousands of computers.2

1.2. Specific Contribution

While using real data is hard and costly, using synthetic data also comes
with significant challenges. In order to get the most out of synthetic data,
the cost delta compared to using real data must be maximized.

In this contribution, we present a paradigm addressing this problem. We
formulate the generation of synthetic data as an iterative process where each
step is guided by a human expert. The task is to estimate in each step what
aspects of the renderings have to be improved in order to meet a given target
quality without wasting resources on expensive but ineffective improvements.
In other words, the goal is to find synthetic datasets that meet the minimal
requirements to train successful deep neural network models, as this is the
most cost effective solution.

2For comparison, the 2013 movie Gravity would have required 7 000 years
of rendering time on a single personal computer available at that time;
see https://creativechair.org/chris-parks/ .
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Using this paradigm, the potential of synthetic data can be leveraged and
significant cost savings reached. After a formal definition of our paradigm we
demonstrate its application and effectiveness addressing a practical use-case
of training a neural classifier to distinguish between healthy and diseased
tomato plants (Solanum lycopersicum) grown in a greenhouse.

2. Related Work

ML has demonstrated a wide range of applications in the agricultural do-
main, including the management of crops, livestock, soil, and water. A com-
prehensive literature review of ML applications in agriculture shows that
research has primarily focused on crop management (BTD+21). Within
this domain, ML techniques have been applied extensively to yield predic-
tion (vKC20), crop recognition such as in (HLC20) and harvesting such as
in (WBHvT+17), as well as weed detection (WZW19).

A large body of ML research in crop management focuses on disease de-
tection in plants (BTD+21). This focus on disease detection is well-justified,
as pests and diseases are a major challenge for agriculture and food security
globally, causing an up to 40% loss in yields each year (SWP+19). Early
disease detection in agricultural crops enables earlier interventions that can
prevent spread, saving substantial amounts of time and resources. Mitigation
measures are generally more effective if applied at the early stages of disease,
which also results in less pesticide used for management of the pathogen.
Commercial agriculture currently relies on skilled human scouts for disease
detection. Ideally scouts do daily walk-throughs, but due to costs and limited
personnel, walk-throughs are typically much less frequent in practice. Man-
ual detection methods are neither quick nor failsafe – detecting symptoms
in crops requires careful attention, especially in the early stages, and costly
errors are sometimes made.

Considering these challenges in manual disease detection, much attention
in the past two decades has been directed to automated methods of detection,
which utilize optical sensors to survey the crop and support in detection and
diagnosis of plant diseases (Mah16). Such tools as RGB, multi- and hyper-
spectral, thermographic, chlorophyll fluorescence, and 3D imaging sensors
are able to measure changes in plant physiology as the plant experiences
biotic stress from disease. Common symptoms of disease in plants include
leaf malformation, discoloration, and wilt. These can be detected via changes
in plant or leaf temperature, reflectance, and fluorescence.
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Despite advances in sensing technologies in recent decades, there are nu-
merous challenges which limit the scope of automated disease detection ap-
plications. A main challenge is the selection of the appropriate image features
(i.e., texture, color, and/or shape) which has to account for the complexity
of various symptoms as well as the capturing modality that can be per-
formed throughout the growing area. Another challenge is the development
of accurate and efficient learning algorithms. Accurate classification of dis-
eased and healthy plants in real conditions with varying light levels, shading,
and complex surroundings can be extremely difficult. In addition, large im-
age datasets in a diversity of conditions are needed to train the algorithm.
PlantVillage is the largest and most widely studied repository of real images
of diseased and healthy leaves (HS15), but its usefulness is limited by the
fact that all of the images are segmented leaves with a homogeneous dark
background.

Gathering real images of diseased plants at different stages of infection,
but particularly at early stages of infection, is a often a challenge because of
lack of available data. This challenge can be seen in (WM16), who developed
a system for early detection of powdery mildew disease in greenhouse tomato
in a natural setting using a camera setup with varying light settings, and
Hough forests as the detection algorithm. According to the authors, the
study was limited by the size of the dataset (60 images in total) that could
be used for training and testing the classifier model.

Synthetic data is a promising solution for the lack of sufficient and high-
quality, real training data for ML tools, and in recent years has been explored
for agricultural applications. Augmentation (i.e. applying various geometry
and color transformation) of real images can be understood as proto-synthetic
approaches. (PKS17) use an image dataset of grass with and without weed
incidence to train a neural network on weed detection. The authors apply a
custom software to augment real images of a lawn, which were captured with
a smartphone mounted on a robotic vehicle.

Generative adversarial networks (GANs) can be used as an even stronger
form of augmentation. (AKS+19) use a GAN to supplement traditional aug-
mentation techniques to create an image dataset called PlantDisease for leaf
diseases in more real-life conditions, as an alternative to the PlantVillage
dataset. (AJGV21) utilize a conditional GAN (C-GAN) for image augmen-
tation of diseased and healthy singular tomato leaves (also called “leaflets”)
from the PlantVillage dataset. Their model achieved high accuracy (> 97%
mean average precision), but improving it further is made hard by the limited
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amount of available input data for the GAN.
To the best of our knowledge, (WBHvT+17; BIHH18) demonstrated for

the first time the use of fully synthetic training data in a computer vision task
in the agricultural domain when they created a synthetic image dataset of
sweet peppers in a greenhouse. The authors used a few real images captured
by a harvesting robot as a template to build a model based on PlantFactory
that generates randomized instances of the plants, fruits, and backgrounds.
These scenes are then rendered using Blender, requiring about 10 minutes of
rendering time per scene on state-of-the-art hardware. With these images, it
was for the first time possible to train a neural network for the segmentation
of anatomical plant components without relying on excessive real data. How-
ever, considering the high amount of computation time necessary to generate
the synthetic dataset, the authors point out the need for a more optimized
process. Later, (TOI+20) implemented a method for high-throughput crop
seed phenotyping trained with synthetic images.

3. The Synthetic Data Pipeline

We now describe and formally define a pipeline which contains the rel-
evant steps to train a neural network using synthetic training data. For a
more thorough explanation of training neural networks in general, we refer to
the literature (e.g., (GBC16)). For simplicity, we now focus on classification
networks, that take a 2D image as input and outputs a discrete image class.
However, our solution can also be extended to other neural networks and
tasks, such as segmentation networks.

Neural networks are trained by supplying them with many examples,
e.g., pairs of images and corresponding classes. During the training, they
extract statistical properties from the inputs to derive the correct output.
Training data can be captured from the real environment (e.g., photographs
or point clouds) or synthesized (e.g., renderings). This distinction, however,
is not exclusive, as real datasets usually contain some synthetic augmentation
(e.g., (AJGV21)), or the synthetic renderings are generated using real images.
For example, real photographs can be used as background textures as part
of the rendering process (SK19).

Our method is described in Figure 1: we first define procedural models
that generate the geometry of plants and accompanying textures required for
rendering. We then use the procedural models to generate scenes of tomato
plants in a greenhouse setting and render photorealistic images. Each image
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is associated with a label, that defines whether or not a plant is diseased. A
set of rendered images along with their labels is then used as a dataset for
training the classification neural network. The network is trained on mini-
batches of data from the dataset for a number of epochs. During training,
various image-based operators are applied to individual images (e.g. bright-
ness, contrast, etc.) - this process is called data augmentation. This results
in greater variance of images in the training data. After the classification net-
work has been trained, we validate its performance based on a dataset of real
images. The resulting performance is analyzed qualitatively and quantita-
tively by a human expert to determine how to improve the procedural models
for the next training cycle. The generation process of synthetic datasets is
complex and goes along with the repeated training of the network.

3.1. Network Training

Since networks are mathematical objects, the input image has to be en-
coded into a vector of real numbers first. This high-dimensional vector is
then processed by the network and transformed into a low-dimensional out-
put vector which can be decoded into the classification. We call the vector
space of encoded input images I, and an individual input image i ∈ I. R ⊂ I
is the subspace of real input images, while S ⊂ I is the subset of synthet-
ically generated input images. L is the space of all possible labels, e.g.,
L = {healthy, infected} in case of a binary classifier distinguishing between
healthy and infected plants. Such a classifier is illustrated in Figure 2.

In a dataset D := D(J) = {(i, G(i))|i ∈ J)} ⊂ D := I × L, each image
i ∈ J ⊂ I is assigned a ground truth label G(i) via G : I → L. While G maps
any image (whether real or synthetic) to its correct label, D consists only
of a limited amount of images and their labels. The number |J | of images
in J is typically in the range between a few thousands and a multiple of
ten thousand. A network Nw : I → L,N (i) 7→ p, which is parameterized
by its weights w, similarly maps images to predictions p. If p = G (i), the
prediction is correct.

The network consist of several linear and non-linear layers that each per-
form simple mathematical operations (such as computing weighted linear
combinations of its input or selecting the maximum value amongst its in-
puts), each parameterized by the network parameters denoted as the weights.
The complexity and power of the network is a result of the large number of
these operations, for instance the network used in our use-case described
in Section 5 has a total of 2 960 514 weights. Due to the sheer amount of
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Figure 1: Illustration of our synthetic data pipeline. Left: Geometry and textures are

generated, and used to render synthetic scenes. Right: A dataset of synthetic renderings

is used to train a network. Based on the evaluation of the resulting classifier, the data

generation is improved and the dataset regenerated for the next iteration.
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Figure 2: Illustration of ML driven classification. The input image is encoded in an input

vector (which can have a very large number of components) that is then can be processed

by the neural network. The resulting output vector is decoded (e.g., from a negative

log-likelihood encoding), resulting in a probability per class.
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weights, they cannot be chosen by hand but have to be determined through
numerical optimization within the process of training the network.

During training, the task is to find the optimal weights to map the input
images to the correct labels. The training is influenced by several parameters
as well, called the hyper parameters h ∈ H. Note, that h denotes a vector
containing all hyper parameters and accordingly H is the set of all possible
hyper parameter combinations. The hyper parameters include the learning
rate and batch size of the stochastic gradient descent optimizer, and also
data augmentation parameters (see below) which have a significant impact
on the learning success.

The training function T : H ×D → (I → L) , T (h,D) 7→ Nw then maps
a combination of dataset and hyper parameters to a trained network with
weights w ∈ R. The mapping ∥·, ·∥ : L × L → R is a measure of similarity
between two labels. We can express T as

T (h,D) = Nw , where w = arg min
w′∈R

∑
i∈D

∥Nw′ (i) , G (i)∥ . (1)

While the weights define the network parameters, its general structure is
given by the so-called network architecture. The architecture describes the
concrete combination (topology) of different layer types. Over the last years,
suitable architectures for many types of problems (such as classification or
segmentation) have been established. While the architecture could also be
considered as a part of the hyper parameters, we assume it to be static for a
given problem. We note however, that our framework could be adjusted for
variable network architectures as well. An example of such an architecture
is shown in Figure 5.

Multiple well established toolkits exist for the implementation of neural
networks, such as Keras3, PyTorch4, and TensorFlow 5. They also provide
stochastic gradient algorithms than can be used to solve Equation 1 in an
iterative way.

It is important to note, that the task is not to find the correct mapping
J → L for images in J contained in the dataset D but rather a general
mapping I → L for all possible input images. This is called generalization.

3See https://keras.io/ .
4See https://pytorch.org/ .
5See https://www.tensorflow.org/ .
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If a network does not generalize well it is said to overfit on the training
dataset. In the extreme case of overfitting, each i ∈ J is predicted correctly
while all i′ ∈ I \ J result in random labels. For a well generalizing network
however, it is usually fine if some i ∈ J are classified incorrectly, as long as
i′ ∈ I \ J yields similar good results. The original dataset is therefore split
into a training and a validation dataset.6 While only the training dataset is
used to optimize w, the validation dataset is used to monitor the performance
on new images. Figure 11 (bottom right) shows an example of a successful
generalization. While the performance on the validation dataset oscillates a
bit, it is on average very similar to the performance on the training dataset.

Overfitting is often the result of a lack of diversity in the training data.
This can either mean too few input images, or images that are too similar
to each other (e.g., showing different objects always from the exact same
angle). A common strategy to mitigate overfitting is data augmentation.
During data augmentation, random alterations are performed on the image,
such as geometric transformations (e.g., mirroring, rotating, zooming), color
adjustments (brightness, contrast, hue), or adding noise. More advanced
augmentation methods use neural networks to transform an input image
into an entirely new, but similar one (AJGV21). A thorough overview of
augmentation strategies is found in the literature (SK19). Since augmenta-
tion increases the diversity, it can actually reduce the network performance
on the training dataset. This is however acceptable, since at the same time
the performance on new images is increased. In summary, two key factors are
important for a successful training: A training dataset with a large variety
and the correct hyperparameters for the training. The framework presented
in this paper optimizes both of them.

3.2. Data Generation

Synthetic dataset are created by means of CG methods. CG is an ex-
tensive research field with a rich history (HVDMG+13) dealing with the
modeling and rendering of virtual scenes. The three main components that
need to be modeled are geometry, materials, and scene composition (object
positions, lighting, camera). Examples are shown in Figure 3.

6To avoid overfitting the hyperparameter h to training and validation datasets, a third
dataset is commonly used at very end of the training procedure to measure the unbiased
performance of the network.

12



Figure 3: Illustration of the main components of a synthetic scene. Left: Object geometry.

Middle: Materials. Right: Scene composition and lighting.

All these components can either be created by an artist by hand or auto-
matically generated through a procedural model. Instead of defining prop-
erties (such as the outline of a leaf or the branching structure of a plant) by
hand, procedural modeling defines rules that depend on various parameters,
and can be instantiated to create geometry. An example of such a proce-
dural model in the agricultural context are L-systems for plant geometry
and node-based texture synthesis of materials (Pai19). By varying the input
parameter vector, and endless amount of images can be created. However,
this does not mean that the diversity is sufficiently high. The instantiation
of procedural parameters essentially resembles an interpolation. If a larger
portion of the total image space I should be covered, additional parameters
have to be added.

4. Using Synthetic Data at Scale

The main bottleneck of the procedure described in the previous section is
the generation of a suitable training dataset S and the finding of the correct
hyperparameters h at minimal development cost. The cost factor deserves
special attention here since the main argument for the use of synthetic train-
ing data is their cost effectiveness. In order to use synthetic data at scale, i.e.,
being able to apply the previously described procedure for a large number
of automation tasks in agriculture, we introduce a paradigm that addresses
this problem by taking a holistic approach. Like the network training itself,
finding S and h is formulated as an iterative optimization scheme where in
each step S and h are gradually improved.

The first step is to determine a suitable target quality qmin. We measure
the performance q = [N (R) , G(R)] of a network N on a real dataset R ⊂ I
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using a measure [·, ·] : L|R| × L|R| → R which is, e.g., defined as the F
score or the P4 metric in case of binary classification (MRS09). Without loss
of generality, we assume that larger values of q are better. Note, that the
network is trained on annotated synthetic data D = D(S) but evaluated on
real data R. Our goal is then to find a pair (h, S) ⊂ H × I such that

[T (h,D(S))(R), G(R)] =: q ≥ qmin.

Without consideration of any cost, h could be found by a brute-force parame-
ter sweep, while for S renderings with the highest degree of photorealism and
variability could be used. But if we assume that the quality is proportional
to the invested cost, the goal becomes finding the worst pair (h, S) which
still satisfies q ≥ qmin. We address this iteratively. An iteration step

Ik : H ×D → H ×D, (hk, Sk) 7→ (hk+1, Sk+1)

refines the hyperparameters and the dataset (though it is not required that
both change in each iteration). Each iteration Ik is associated with a certain
cost measured by the cost function C (Ik). The overall optimization problem
is then to find the sequence (I1, . . . , In) of iterations with minimal cost that
yields the desired quality:

arg min
(I1,...,In)

n∑
k=1

C (Ik) , subject to q ≥ qmin . (2)

Here we see why a reasonable choice of qmin is important: According to the
Pareto principle, if qmin is too large, this results in an excessive amount of
iterations with exponentially growing costs. Knowing what quality is accept-
able is crucial to minimizing cost. Solving Equation 2 cannot be performed
automatically through naive numerical optimization. Rather, every iteration
step k requires the guidance of a human expert. The solution is typically
obtained by maximize the quality gradually at every step.

Taking a closer look at Ck := C(Ik), shows that it consist of several
components:

Ck = CE
k + CM

k + CR
k + CT

k ,

where CE
k is the cost of evaluating the previous iteration required for deciding

on the next changes, CM
k is the modeling cost to improve the generator for

the synthetic images (performed by an artist), CR
k is the required rendering
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costs for the new dataset (often outsourced to a rendering farm and payed per
core minute) and CT

k is the cost of training a new network with the improved
hyperparameters and dataset. The cost for changing the hyperparameters
is entirely contained in CE

k , since they are a simple vector that requires no
modeling time. For a brute force search of the best hyperparameters the total
cost is dominated by CT

k since the dataset remains the same (CM
k = CR

k = 0)
and CE

k is minimal (as it only consist of a sampling strategy for h). Often
the most expensive step is to improve the dataset since CM

k and CR
k are

typically large. It can be beneficial to split such an iteration into multiple
sub-iterations, which introduces additional CT

k , but gives an overall better
understanding of the required changes.

5. Early Disease Detection for Tomato Plants

The previously described paradigm is now applied in order to develop a
neural classifier for early disease detection of tomato plants (Solanum lycoper-
sicum). This use-case is not only well suitable to demonstrate our paradigm
but also addresses an important practical problem. Especially in monocul-
tures found in greenhouses, diseases can spread rapidly and can quickly be-
come uncontrollable (SWP+19). Detecting them as early as possible greatly
increases the chance of such a catastrophical crop failure but requires con-
stant and expensive monitoring. Any step toward automatizing this process
is therefore a great benefit.

We use a UAV patrolling through rows of the greenhouse complex in
order to capture images of the tomato plants as illustrated in Figure 4. As
the tomato plants grow up to remarkable sizes (typical values are up to 10 m),
we prefer to use UAVs instead of self-driving vehicles patrolling through rows.
This also comes with low hardware costs as the price of our DJI Mini 3 Pro
is below USD 1 000. This UAV is also sufficiently small in size to fly through
the rows of our greenhouse. For larger greenhouse complexes, multiple UAVs
can be used, e.g., a single drone per row.

In this section, we focus on the binary classifier which groups pictures
of the leaves into two classes containing healthy and infected leaves (|L| =
2). Potential infections can then be reported to a human overseer who can
confirm or reject them. Reducing the need for manually checking the entire
greenhouse complex to checking only a few candidates greatly reduces cost
even if the detection rate is not perfect. Overall we aim for an accuracy of
qmin ≈ 90%.
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Figure 4: Illustration of the image collection process in the greenhouse complex host-

ing tomato plants (Solanum lycopersicum). Left: An autonomously flying UAV patrols

through each line, taking photos. Middle: Example of a healthy leaf. Right: Example of

an infected leaf.

Figure 5: Simplified illustration of the layered architecture of our classification network.

Each layers width corresponds to the cubic root of its dimensionality. The input image

(top row) is expanded into multiple parallel filters and throughout the network their size

consecutively shrinks until a single value denoting the classification remains. The total

number of weight in this network is |w| = 2960 514.
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Figure 6: Illustration of geometry and textures of the first iteration of synthetic data.

Left: The geometry of the branches is procedurally generated and two examples are shown.

Middle: Textures for healthy and infected leaves are generated. The infected textures are

generated from the healthy ones by adding typical patterns of dead leaf cells. Right: A

final rendering of a textured branch in the scene.

We implement our neural classifier in Keras using a standard classification
network architecture as shown in Figure 5. To measure the training loss
∥·, ·∥ we use the categorical cross-entropy loss function as implemented in
Keras. As performance measure [·, ·], we divide the number of falsely labeled
images by the total number of images. We start with an initial choice of
h1 and a simple initial dataset D1 := D(S1) and refine it over the course
of a total of n = 6 iterations generating D2 := D(S2), . . . , D6 := D(S6) and
hyperparameter h2, . . . , h6 to reach our target accuracy. After each iteration,
an extensive evaluation is required to make an informed decision about the
next changes in h and D (which is the reason why this evaluation is included
as the cost CE

k ). We monitor the achieved performance on the synthetic
training and validation datasets as well as on a real dataset R. Moreover, we
take a closer look at the performance on individual images which helps us
to understand what additional features have to be modeled in the synthetic
images.

5.1. Iteration k = 1

The initial dataset is shown in Figure 6. To generate synthetic plant
geometry, we have implemented a node-based procedural modeling system as
commonly used L-systems for tomato plants (CNK14) do not aim for the level
of realism required for our task. The model has a large number of parameters
including the number, size, and orientation of leaves, as well as bending and
length of the branch. The leaf textures are generated using Adobe Substance
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3D Designer 7. We generate the typical set of physically-based rendering
(PBR) textures which include layers such as a diffuse albedo map, a normal
map, an ambient occlusion map, and a height map (HVDMG+13). With
these layers, we do not only model the color of the leaves but also the physical
interaction of light with the leaf material, which greatly enhances realism.
The scene consists of a single branch with leaves and a random high dynamic
range (HDR) panorama photo captured in the greenhouse as background.
This panorama also illuminates the scene, meaning that it is illuminated by
the same lighting conditions as the plants in the greenhouse. Although the
generated renderings look plausible and detailed, they do not look completely
photorealistic. A human may initially be fooled to think they are real images,
but in comparison with actual photographs the differences become visible.

For the hyperparameter h1 we chose values typical for a binary classifi-
cation task: The input resolution is 256 × 256, the batch size is 16 and the
learning rate is 10−4. For the augmentation, we chose a simple combina-
tion of zooming, brightness adjustment, flipping, and rotation. Examples of
augmented images are shown in Figure 7.

The initial dataset consists of |S1| = 3 400 images, where half of them
show healthy and half of them show infected leaves. Around 10% of the
images are used for the validation dataset. Monitoring the performance on
both synthetic datasets shows that the network does not overfit as shown in
Figure 11, bottom right. This means, that the dataset is sufficiently large
and by adding more images we likely would not see an increase in quality.
This information helps to cap the cost CR

1 .
We also evaluate the performance on real data as shown in Figure 11. We

find that almost all images are classified as healthy regardless of their actual
class which means that we learn almost nothing about the true class.

5.2. Iteration k = 2

After reviewing the results we conclude that the size of the dataset, the
network architecture, and training hyperparameters are fine (since the ac-
curacy on the validation dataset is high), but that the domain gap between
real and synthetic images is too large and the network cannot generalize to
the real data. Since enhancing the realism of the procedural model is a very
time-consuming task, we first try faster changes to shrink to domain gap.

7See https://www.adobe.com/ .
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Figure 7: Comparison of augmentation modes. First row: Five different synthetic render-

ings. Second to fourth row: The first image of the first row augmented 5 times for each of

the 3 augmentation modes (weak, medium, and strong). Fifth row: A random selection

of real and synthetic images augmented with strong augmentation. Through the augmen-

tation process, it becomes difficult to distinguish between real and synthetic images, thus

the domain gap between both sets is reduced.

19



We add a second, slightly defocused branch to the background of each image
without changing the branch generation itself. This is done to mimic the
cluttered environment of the greenhouse and to make the network invariant
to camera focus. In total, we render |S2| = 2 472 new images. We also in-
crease the augmentation in h2: Referring to Figure 7, we add Gaussian blur,
contrast adjustment, hue shifting, and additive Gaussian noise, and retrain
the network. This indeed improves the detected of infected leaves, but not
by an sufficient amount as shown in Figure 11.

5.3. Iteration k = 3

Since increasing the augmentation is cheap and gave good results in the
previous iteration, we now increase it even further for h3. We continue to
use the same operations but with a larger variety of parameters. As seen
in Figure 7, the look of the images is quite drastically altered now. The
dataset remains the same as in the previous iteration, thus |S3| = |S2|. After
retraining the network, we find that the accuracy improves only marginally
(Figure 11), indicating that we have to proceed in a different direction.

5.4. Iteration k = 4

It is now clear, that our synthetic images are too different from the real
photos. However, many things could be improved about the renderings: We
could have more variety in the branch geometry, increase texture details, or
model more complex scenes (e.g., creating geometry for the whole greenhouse
and a large amount of plants instead of a single branch in front of background
panoramas). Implementing all of these improvements would be prohibitively
costly, so instead, we perform a detailed analysis on which images are classi-
fied well. Since healthy plants are usually classified as healthy, we focus on
images of infected plants.

Figure 8 shows the accuracy for 19 different input images across the it-
erations. We find that the distribution is extremely uneven: Some images
are repeatedly classified correctly while others are almost never. Comparing
the real input images with our renderings (see Figure 9), we find that infec-
tion can alter the leaf textures in many different ways. Infections resembling
the type that we initially modeled are then classified correctly, while other
types of patterns are not detected. We therefore improve our texture cre-
ation pipeline by adding additional disease types. The new synthetic disease
textures are also shown in Figure 9. Since we have significantly increased the

20



A B C D E F G H I J K L M N O P Q R S
0.0

0.2

0.4

0.6

0.8

1.0
Iteration 1: 4.770%

A B C D E F G H I J K L M N O P Q R S
0.0

0.2

0.4

0.6

0.8

1.0
Iteration 2: 24.287%

A B C D E F G H I J K L M N O P Q R S
0.0

0.2

0.4

0.6

0.8

1.0
Iteration 3: 25.439%

A B C D E F G H I J K L M N O P Q R S
0.0

0.2

0.4

0.6

0.8

1.0
Iteration 4: 17.873%

A B C D E F G H I J K L M N O P Q R S
0.0

0.2

0.4

0.6

0.8

1.0
Iteration 5: 21.930%

A B C D E F G H I J K L M N O P Q R S
0.0

0.2

0.4

0.6

0.8

1.0
Iteration 6: 45.450%

Figure 8: Network accuracy on real images of infected plants for each iteration. The letters

on the horizontal axis denote the individual images. The dotted line shows the average

accuracy across all images.

variety of the dataset, we increase to total number of images to |S4| = 6 400.
The hyperparameters stay the same, thus h4 = h3.

While training the network we find that the accuracy even on synthetic
data is very low. The increased diversity in the dataset makes the training
significantly harder.

5.5. Iteration k = 5

To make the training easier without reducing the diversity of the dataset,
we reduce the image augmentation in h5 again to the previous level as in
h2. The dataset stays the same as in the previous iteration, thus |S5| = |S4|.
The training works and we get an overall accuracy similar to iteration 3
(Figure 11). However, when looking at the performance of individual images
(Figure 8), we find that the distribution is more even than for iteration 3.
This means, that the modeling of additional diseases has payed off.

5.6. Iteration k = 6

We attribute the remaining inaccuracies in the classification to the dif-
ferent global look of the renderings and photos. This could be addressed
by stronger augmentation, however in iteration 4 we saw that a too difficult
dataset makes the training harder. We therefore change the training strat-
egy in h6 and employ a mixed training model, without changing the dataset
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Figure 9: Different types of diseases affecting the leaf texture of these tomato plants

(Solanum lycopersicum). Top row: Synthetic images. Bottom row: Photographs.

(|S6| = |S5|). During the first half of the training, medium augmentation as
in h2 is used. Once the network works sufficiently well, we switch over the
stronger augmentation of h3. This results in an initial drop of the accuracy
(since the problem became harder), but eventually the half trained network
can adjust to the stronger augmentation and reach a high accuracy on them.

5.7. Improving the Classification Results

After the network training, we now perform a deeper statistical analysis of
the results. During the training with synthetic renderings, we used augmen-
tation to increase the diversity and to mimic artifacts found in real images
but not the renderings (blurring, noise, etc.). As seen in Figure 7, the aug-
mentation can be quite strong. Therefore, when using the trained network
for classification, the same augmentation as during the training should be
applied before passing the images to the network. However, since the photos
already contain artifacts mimicked by the augmentation, this would in some
sense result in a double augmentation. To decide, which augmentation mode
should be applied for real images, we perform an analysis, where each image
is classified multiple times (since the augmentation parameters are chosen at
random, every time). The results are shown in Figure 10.

We find, that there is no clear best performing augmentation mode for
real input images but that the results rather depend on the input image.
We further find, that healthy input images are classified as healthy in over
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Figure 10: Network prediction performance by input image for different augmentation

modes. For each mode, the input image was augmented 32 times with random parameters

according to the given augmentation mode. The number of correct classifications are added

up. The vertical scale shows normalized accuracy. Note, that since the none augmentation

mode does not alter the image, either all or no instances of the image are correctly classified

since the network is deterministic.

80% of the cases, independent from the augmentation mode. Furthermore,
for 16 out of the 19 infected images, at least one augmentation mode lies
above the equivalent threshold (20%). We conclude, that the network is
biased towards the healthy case. But by taking the estimated accuracy into
account, this bias can be corrected. If we consider for any input image a
value of below 80% healthy score (equivalent to an above 20% infected score)
as infected, then 26 out of 29 images are correctly classified. We therefore
reach an overall accuracy of 89.6%, which is roughly equal to the initial qmin,
ending our optimization. Without this analysis, the naive threshold would
be at 50%, leading to an accuracy of only 75%. In some sense, we apply a
post-processing to the network’s output to increase the accuracy – similar to
the pre-processing of the inputs in the augmentation step.

5.8. Further Comments

A summary of the cost and performance of each iterations is shown in
Figure 11. It is important to note, that the cost types are separated into
two distinct categories. CE and CM directly relate to working hours of
an expert and are thus typically very expensive. In contrast, CR and CT

relate to computational time of computers. For scenarios like our use-case,
they can often run over night and thus do not stall the general development
if scheduled carefully. However, for larger datasets and more complicated
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CE
1 includes the initial development of the classifier framework. CE

6+1 include the statistical

analysis described in Section 5.7. Bottom left: The accuracy q = [T (h,D(S))(R), G(R)] of

the classifier plotted over its development time. The dots mark the individual iterations.

Bottom right: The training process of iteration 5 shows, that the accuracy on the validation

dataset closely follows the accuracy on the training dataset indicating that the network

generalizes well. The lines show the average of the healthy and infected classes. Note,

that the lowest accuracy for a binary classification is 50% which corresponds to random

guessing of the class.
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training CR and CT can also become very expensive, for instance, the training
cost of the recently released Stable Diffusion network (RBL+22) was about
USD 600 000.8

In this use-case we trained a network to the desired accuracy in only
n = 6 iterations. Out of those, only one included a redesign of the dataset.
We can see several key points here: Firstly, the dataset is not optimized
for photorealism but rather for the distinction between healthy and infected
leaves. Secondly, this crucial information became available through thorough
evaluation. In other words, increasing CE

k can over proportionally decrease
CM

k , CR
k , and CT

k , leading to an overall lower cost C. And thirdly, a good
understanding of the behavior of the trained network can be used to increase
its performance.

Using the presented paradigm, total costs of about C = 125.5 h have been
invested to develop our classifier comprising approximately CE +CM = 64 h
of human work and 61.5 h of computation. For comparison, we estimate the
total costs of human work without applying the presented paradigm. Based
on our extensive previous work comprising plant modeling, simulation, and
rendering, we estimate the development time of a fully photo-realistic plant
generator to be at least three months for a single expert. In this unguided
approach, no continuous, quantitative feedback based on the intermediate
network performance would be provided during the development and thus
all visual features would be addressed with equal importance. This lack of
prioritization then severely impacts the efficiency, driving up overall devel-
opment cost.

6. Conclusion

In this contribution, we have presented a paradigm for the development
of synthetic training data in order to efficiently automatize agricultural tasks
with ML. While it is to some extend straightforward to create “good” training
data, it is much more difficult to do so in a cost efficient way. We have
demonstrated, that using our paradigm, the desired goal can be achieved by
a small amount of only six iterations in our use-case. Importantly, we find
that photorealism (which is expensive to achieve) is not the main quality
driver of the trained network. Rather, most iteration steps consist only of

8See https://twitter.com/emostaque/status/1563870674111832066 .
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small changes that optimize the data for the distinction between the different
classes, rather than overall realism. Naturally, our paradigm is driven by a
human expert. It is therefore less of a plug-and-play solution but rather a
development philosophy enabling the efficient and effective use of synthetic
data. In future work, we aim to further automatize different steps within
the development process to boost efficiency and reduce the time spent by the
human in the loop.

Based on our paradigm, a neural classifier could be efficiently devel-
oped for the early detection of infections in our greenhouse complex growing
tomato plants (Solanum lycopersicum). Total costs of about 125.5 h have
been sufficient to develop the classifier within our paradigm which only in-
cludes approximately 64 h of human work (evaluation plus modeling costs)
and 61.5 h of computation (rendering plus training costs). Note, that these
costs are only a very small fraction of the effort of the research project pre-
sented here as – next to the formalization of the paradigm which emerged
from the experience with different use cases – we developed the corresponding
technical routines to allow for an efficient workflow. Also, the training time
of the developer who has to become familiar with these routines and working
within the presented paradigm, is not included. Our classifier performs with
an accuracy of about 90% significantly reducing the need for manual checking
of the entire greenhouse complex. Using UAVs, our final early disease detec-
tion method for tomato plants can be implemented in greenhouse complexes
at low costs. However, our classifier comes with limitations as infected leaf
textures have been generated from healthy ones by adding typical patterns of
dead leaf cells. If, e.g., a disease is mainly visible at an early stage by looking
at the branches instead of the leaves, it is not sufficient to only focus on leaf
textures, but instead more investments have to be made to model the im-
plications on the branches. This could, e.g., require the modeling of wilting
effects influencing the whole plant geometry and not only the leaves’ textures.
This is why, among others, we aim for an efficient simulator of plant wilting
in future work addressing geometrical features of plant diseases in addition
to those which could already be modeled by modifying leaf textures.
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